Skip to main content
Log in

On the stability of self-similar solutions of 1D cubic Schrödinger equations

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper we will study the stability properties of self-similar solutions of \(1\)D cubic NLS equations with time-dependent coefficients of the form

$$\begin{aligned} \displaystyle { iu_t+u_{xx}+\frac{u}{2} \left(|u|^2-\frac{A}{t}\right)=0, \quad A\in \mathbb{R }. } \end{aligned}$$
(0.1)

The study of the stability of these self-similar solutions is related, through the Hasimoto transformation, to the stability of some singular vortex dynamics in the setting of the Localized Induction Equation (LIE), an equation modeling the self-induced motion of vortex filaments in ideal fluids and superfluids. We follow the approach used by Banica and Vega that is based on the so-called pseudo-conformal transformation, which reduces the problem to the construction of modified wave operators for solutions of the equation

$$\begin{aligned} iv_t+ v_{xx} +\frac{v}{2t}(|v|^2-A)=0. \end{aligned}$$

As a by-product of our results we prove that Eq. (0.1) is well-posed in appropriate function spaces when the initial datum is given by \(u(0,x)= z_0 \mathrm p.v \frac{1}{x}\) for some values of \(z_0\in \mathbb{C }\setminus \{ 0\}\), and \(A\) is adequately chosen. This is in deep contrast with the case when the initial datum is the Dirac-delta distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. See also [9, 22, 23].

  2. Notice that if \(a=0\), then \(|f(0)|=|f^{\prime }(0)|=0\), so that \(f\equiv 0\).

  3. The existence of \(|f|_{\pm \infty }\) was established in [16], see Proposition 1 in Sect. 2.

  4. If \(|f|_{+\infty }=|f|_{-\infty }\) (\(|f^{\prime }|_{+\infty }=|f^{\prime }|_{-\infty }\)), then we will denote \(|f|_{\pm \infty }\) by \(|f|_{\infty }\) (respectively, \(|f^{\prime }|_{\pm \infty }\) by \(|f^{\prime }|_{\infty }\)).

  5. In order to simplify notation, in what follows we will write simply \(Y\) to denote the space \(Y_{t_{0}}^{\nu }\).

  6. Conversely, using the parallel frame defined by the system (2.53), it can be also proved that if \(\mathbf{X }(t,x)\) is a regular solution of LIE, and define the function \(u=\alpha +i \beta \), then \(u\) solves the \(1\)d-cubic Schrödinger equation

    $$\begin{aligned} \displaystyle { iu_t+ u_{xx}+\frac{u}{2} (|u|^2-A(t))=0 } \end{aligned}$$

    with \(A(t)= -|u|^2(0,t)/2- \langle \partial _t\mathbf e_{1} , \mathbf{e_2 }\rangle (0,t)\).

  7. Recall that for odd solutions of LIA, the third component of the associated tangent vector, \(T_{3}\), is an even function. Thus, in particular \(T_3(+\infty )=T_3(-\infty )\).

References

  1. Arms, R.J., Hama, F.R.: Localized-induction concept on a curved vortex and motion of an elliptic vortex ring. Phys. Fluids 8(4), 553–559 (1965)

    Article  Google Scholar 

  2. Alekseenko, S.V., Kuibin, P.A., Okulov, V.L.: Theory of Concentrated Vortices. An Introduction. Springer, Berlin (2007)

    MATH  Google Scholar 

  3. Batchelor, G.K.: An Introduction to the Fluid Dynamics. Cambridge University Press, Cambridge (1967)

    Google Scholar 

  4. Banica, V., Vega, L.: On the Dirac delta as initial condition for nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 25(4), 697–711 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Banica, V., Vega, L.: On the stability of a singular vortex dynamic. Commun. Math. Phys. 286(2), 593–627 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Banica, V., Vega, L.: Scattering for \(1\)d cubic NLS and singular vortex dynamics. J. Eur. Math. Soc. (to appear)

  7. Banica, V., Vega, L.: Selfsimilar solutions of the Binormal Flow and its stability. Panorama et Synthese SMF (to appear)

  8. Betchov, R.: On the curvature and torsion of an isolated vortex filament. J. Fluid Mech. 22, 471–479 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  9. Buttke, T.F.: A numerical study of superfluid turbulence in the self-induction approximation. J. Comput. Phys. 76, 301–326 (1988)

    Article  MATH  Google Scholar 

  10. Cazenave, T.: Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics, vol. 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence (2003)

  11. Chirst, C., Colliander, J., Tao, T.: A priori bounds and weak solutions for the nonlinear Schrödinger equation in Sobolev spaces of negative order. J. Funct. Anal. 254(2), 368–395 (2008)

    Article  MathSciNet  Google Scholar 

  12. Ciocan, G.D., Iliescu, M.S.: Vortex rope investigation by 3D-PIV method. In: Proceedings of the 2nd IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems (Timisoara, Romania). Scientific Bulletin of the “Politehnica” University of Timisoara, Transactions on Mechanics, vol. 52(66), Issue 6, pp. 159–172 (2007)

  13. Da Rios, L.S.: On the motion of an unbounded fluid with a vortex filament of any shape. Rend. Circ. Mat. Palermo 22, 117–135 (1906)

    Article  MATH  Google Scholar 

  14. Duoandikoetxea, J.: Fourier Analysis. Graduate Studies in Mathematics, vol. 29. American Mathematical Society, Providence (2000)

  15. Grunrock, A.: Bi- and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS. Int. Math. Res. Not. 41, 2525–2558 (2005)

    Article  MathSciNet  Google Scholar 

  16. Gutiérrez, S., Vega, L.: Self-similar solutions of the localized induction approximation: singularity formation. Nonlinearity 17(6), 2091–2136 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gutiérrez, S., Rivas, J., Vega, L.: Formation of singularities and self-similar vortex motion under the localized induction approximation. Commun. Partial. Differ. 28, 927–968 (2003)

    Article  MATH  Google Scholar 

  18. Hasimoto, H.: A soliton on a vortex filament. J. Fluid Mech. 51, 477–485 (1972)

    Article  MATH  Google Scholar 

  19. Kenig, C., Ponce, G., Vega, L.: On the ill-posedness of some canonical dispersive equations. Duke Math. J. 106, 617–633 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Koch, H., Tataru, D.: A priori bounds for the 1D cubic NLS in negative Sobolev spaces. Int. Math. Res. Not. IMRN 2007, no. 16, Art. ID rnm053, p. 36

  21. Kuibin, P.A., Okulov, V.L., Susan-Resiga, R.F., Muntean, S.: Mathematical models for predicting the swirling flow and the vortex rope in a Francis turbine operated at partial discharge. In: IOP Conference Series: Earth and Environmental Science, vol. 12, 012051 (2010). doi:10.1088/1755-1315/12/1/012051

  22. Lipniacki, T.: Quasi-static solutions for quantum vortex motion under the localized induction approximation. J. Fluid Mech. 477, 321–337 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lipniacki, T.: Shape-preserving solutions for quantum vortex motion under localized induction approximation. Phys. Fluids 15(6), 1381–1395 (2003)

    Article  MathSciNet  Google Scholar 

  24. Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  25. Nahmod, A., Shatah, J., Vega, L., Zeng, C.: Schrödinger maps and their associated frame systems. Int. Math. Res. Not. IMRN 2007, no. 21, Art. ID rnm088, p. 29

  26. Pitt, H.R.: Theorems on Fourier series and power series. Duke Math. J. 3(4), 747–755 (1937)

    Article  MathSciNet  Google Scholar 

  27. Ricca, R.L.: The contributions of Da Rios and Levi-Civita to asymptotic potential theory and vortex filament dynamics. Fluid Dyn. Res. 18, 245–268 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ricca, R.L.: Physical interpretation of certain invariants for vortex filament motion under LIA. Phys. Fluids A 4, 938–944 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Saffman, P.G.: Vortex Dynamics. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press, New York (1992)

    Google Scholar 

  30. Schwarz, K.W.: Three-dimensional vortex dynamics in superfluid \({\,}^{4}\)He: line-line and line-boundary interactions. Phys. Rev. B 31, 5782–5804 (1985)

    Article  Google Scholar 

  31. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  32. Vargas, A., Vega, L.: Global wellposedness for 1D non-linear Schrödinger equation for data with an infinite L2 norm. J. Math. Pures Appl. (9) 80(10), 1029–1044 (2001)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous referee for a number of helpful suggestions. L. Vega is funded in part by the grant MTM 2007-82186 of MEC (Spain) and FEDER. Part of this work was done while the first author was visiting the Universidad del País Vasco under the PIC program. S. Gutiérrez was partially supported by the grant MTM 2007-82186 of MEC (Spain). Financial support from the program “Euclidean Harmonic Analysis, Nilpotent Lie Groups and PDEs”, held in the Centro di Ricerca Matematica Ennio De Giorgi in Pisa, is also kindly acknowledged by S. Gutiérrez.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gutierrez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutierrez, S., Vega, L. On the stability of self-similar solutions of 1D cubic Schrödinger equations. Math. Ann. 356, 259–300 (2013). https://doi.org/10.1007/s00208-012-0847-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-012-0847-4

Mathematics Subject Classification (2000)

Navigation