Skip to main content
Log in

On weakly bounded empirical processes

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let F be a class of functions on a probability space (Ω, μ) and let X 1,...,X k be independent random variables distributed according to μ. We establish an upper bound that holds with high probability on \({\rm sup}_{f \in F} |\{i : |f(X_i)| \geq t \}\) for every t >  0, and that depends on a natural geometric parameter associated with F. We use this result to analyze the supremum of empirical processes of the form \(Z_f = \left|k^{-1}\sum_{i=1}^k |f|^p(X_i) - {\mathbb{E}}|f|^p\right|\) for p >  1 using the geometry of F. We also present some geometric applications of this approach, based on properties of the random operator \(\Gamma = k^{-1/2}\sum_{i=1}^k\)X i , ·〉e i , where \((X_i)_{i=1}^k\) are sampled according to an isotropic, log-concave measure on \({\mathbb{R}}^n\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barthe F., Guédon O., Mendelson S. and Naor A. (2005). A probabilistic approach to the geometry of the \(\ell_p^n\) ball. Ann. Probab. 33(2): 480–513

    Article  MATH  MathSciNet  Google Scholar 

  2. Borell C. (1975). The Brunn-Minkowski inequality in Gauss space. Invent. Math. 30: 207–216

    Article  MATH  MathSciNet  Google Scholar 

  3. Bourgain, J.: Random points in isotropic convex bodies. Convex Geometric Analysis (Berkeley, CA, 1996) Math. Sci. Res. Inst. Publ. 34, 53–58 (1999)

  4. Giannopoulos A.A. and Milman V.D. (2000). Concentration property on probability spaces. Adv. Math. 156: 77–106

    Article  MATH  MathSciNet  Google Scholar 

  5. Giné E. and Zinn J. (1984). Some limit theorems for empirical processes. Ann. Probab. 12(4): 929–989

    Article  MATH  MathSciNet  Google Scholar 

  6. Gordon Y., Litvak A., Schütt C. and Werner E. (2002). Orlicz norms of sequences of random varialbes. Ann. Probab. 30: 1833–1853

    Article  MATH  MathSciNet  Google Scholar 

  7. Guédon O. and Rudelson M. (2007). L p moments of random vectors via majorizing measures. Adv. Math. 208(2): 798–823

    Article  MATH  MathSciNet  Google Scholar 

  8. Kannan R., Lovász L. and Simonovits M. (1997). Random walks and O *(n 5) volume algorithm for convex bodies. Random Struct. Algorithms 2(1): 1–50

    Article  Google Scholar 

  9. Ledoux, M.: The concentration of measure phenomenon. Mathematical Surveys an Monographs, vol. 89, AMS (2001)

  10. Ledoux, M., Talagrand, M.: Probability in Banach spaces. Isoperimetry and processes. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 23. Springer, Berlin (1991)

  11. Lust-Piquard F. and Pisier G. (1991). Non-commutative Khinchine and Paley inequalities. Ark. Mat. 29: 241–260

    Article  MATH  MathSciNet  Google Scholar 

  12. Mendelson, S., Pajor, A., Tomczak-Jaegermann, N.: Reconstruction and subgaussian operators. Geom. Funct. Anal. (to appear)

  13. Milman, V.D., Schechtman, G.: Asymptotic theory of finite dimensional normed spaces. Lecture Notes in Mathematics 1200. Springer, Heidelberg (1986)

  14. Pajor A. and Tomczak-Jaegermann N. (1986). Subspaces of small codimension of finite-dimensional Banach spaces. Proc. AMS 97(4): 637–642

    Article  MATH  MathSciNet  Google Scholar 

  15. Pajor A. and Tomczak-Jaegermann N. (1985). Remarques sur les nombres d’entropie d’umopérteur et de son transposé. C. R. Acad. Sci. Paris 301: 743–746

    MATH  MathSciNet  Google Scholar 

  16. Paouris G. (2006). Concentration of mass on convex bodies. Geom. Funct. Anal. 16(5): 1021–1049

    Article  MATH  MathSciNet  Google Scholar 

  17. Pisier G. (1989). The Volume of Convex Bodies and Banach Space Geometry. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  18. Rudelson M. (1999). Random vectors in the isotropic position. J. Funct. Anal. 164: 60–72

    Article  MATH  MathSciNet  Google Scholar 

  19. Talagrand M. (1987). Regularity of gaussian processes. Acta Math. 159: 99–149

    Article  MATH  MathSciNet  Google Scholar 

  20. Talagrand M. (1994). Sharper bounds for Gaussian and empirical processes. Ann. Probab. 22(1): 28–76

    Article  MATH  MathSciNet  Google Scholar 

  21. Talagrand M. (1996). Majorizing measures: the generic chaining. Ann. Probab. 24(3): 1049–1103

    Article  MATH  MathSciNet  Google Scholar 

  22. Talagrand M. (2005). The Generic Chaining. Springer, Heidelberg

    MATH  Google Scholar 

  23. Van der Vaart A.W. and Wellner J.A. (1996). Weak convergence and empirical processes. Springer, Heidelberg

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahar Mendelson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendelson, S. On weakly bounded empirical processes. Math. Ann. 340, 293–314 (2008). https://doi.org/10.1007/s00208-007-0152-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-007-0152-9

Keywords

Navigation