Skip to main content
Log in

Multi-bump Bound States of Schrödinger Equations with a Critical Frequency

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We consider existence and qualitative properties of standing wave solutions \(\Psi(x,t) = e^{-iEt/h}u(x)\) to the nonlinear Schrödinger equation \(ih\frac{\partial\psi} {\partial t} = -\frac{h^2}{2m}\Delta\psi+W(x)\psi-|\psi|^{p-1}\psi = 0\) with E being a critical frequency in the sense that inf \(_{x\in\mathbb{R}^N}W(x)=E\). We verify that if the zero set of W − E has several isolated points x i (\(i=1,\ldots,m\)) near which W − E is almost exponentially flat with approximately the same behavior, then for h  >  0 small enough, there exists, for any integer k, \(1\leq k\leq m\), a standing wave solution which concentrates simultaneously on \(\{x_j|j=1,\ldots,k\}\), where \(\{x_j|j=1,\ldots,k\}\) is any given subset of \(\{x_i|i=1,\ldots,m\}\). This generalizes the result of Byeon and Wang in 3 (Arch Rat Mech Anal 165: 295–316, 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Ambrosetti A., Malchiodi A., Secchi S. (2001) Multipicity results for some nonlinear Schrödinger equations with potentials. Arch. Rat. Mech. Anal. 159, 253–271

    Article  MATH  MathSciNet  Google Scholar 

  2. Byeon, J., Oshita, Y. Existence of multi-bump standing waves with a critical frequency for nonlinear Schrödinger equations (2006) (in press)

  3. Byeon J., Wang Z.-Q. (2002) Standing waves with a critical frequency for nonlinear Schrödinger equations. Arch. Rat. Mech. Anal. 165, 295–316

    Article  MATH  MathSciNet  Google Scholar 

  4. Byeon J., Wang Z.-Q. (2003) Standing waves with a critical frequency for nonlinear Schrödinger equations II. Cala. Var. PDE. 18, 207–219

    Article  MATH  MathSciNet  Google Scholar 

  5. Cao D., Heinz H.P. (2003) Uniqueness of positive multi-lump bounded states of nonlinear Schrödinger equations. Math. Z. 243, 599–642

    Article  MATH  MathSciNet  Google Scholar 

  6. Cao D., Noussair E.S. (2004) Multi-bump standing waves with a critical frequency for nonlinear Schrödinger equations. J. Diff. Equ. 203, 292–312

    Article  MATH  MathSciNet  Google Scholar 

  7. Cingolani S., Lazzo M. (2000) Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions. J. Diff. Equ. 160, 118–138

    Article  MATH  MathSciNet  Google Scholar 

  8. Coti Zelati V., Rabinowitz P.H. (1992) Homoclinic type solutions for a semilinear elliptic PDE on \(\mathbb{R}^N\). Comm. Pure Appl. Math. 45, 1217–1269

    MATH  MathSciNet  Google Scholar 

  9. Dancer E.N. (2003) Real analyticity and non-degeneracy. Math. Ann. 325, 369–392

    Article  MATH  MathSciNet  Google Scholar 

  10. del Pino M., Felmer M. (1998) Multi-peak bound states for nonlinear Schrödinger equations. Ann. Inst. H. Poincarè Anal. Non linèaire 15, 127–149

    Article  MATH  MathSciNet  Google Scholar 

  11. del Pino M., Felmer M. (1997) Semi-classical states for nonlinear Schrödinger equations. J. Funct. Anal. 149, 245–265

    Article  MATH  MathSciNet  Google Scholar 

  12. del Pino M., Felmer M. (1996) Local mountain passes for semilinear elliptic problems in unbounded domains. Cala. Var. PDE. 11, 121–137

    Article  MathSciNet  Google Scholar 

  13. Floer A., Weinstein A. (1986) Nonspreading wave packets for the cubic Schrödinger equations. J. Funct. Anal. 69, 397–408

    Article  MATH  MathSciNet  Google Scholar 

  14. Gilbarg D., Trudinger N.S. (1983) Elliptic Partial Differential Equations of Second Order. Second edition. Grundlehren 224. Springer, Berlin Heidelberg New York and Tokyo

    MATH  Google Scholar 

  15. Grossi M. (2002) On the number of single-peak solutions of the nonlinear Schrödinger equations. Ann. Inst. H. Poincarè, Anal. Non linèaire 19, 261–280

    Article  MATH  MathSciNet  Google Scholar 

  16. Gidas B., Spruck J. (1981) A priori bounds for positive solutions of nonlinear elliptic equations. Comm. P. D. E. 8, 883–901

    MathSciNet  Google Scholar 

  17. Gui C. (1996) Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method. Comm. in P. D. E. 21, 787–820

    MATH  MathSciNet  Google Scholar 

  18. Lions P.L. (1984) The concentration-compactness principle in the calculus of variations. The locally compact case, Part I. Ann. Inst. H. Poincarè Anal. Non linèaire 1, 109–145

    MATH  Google Scholar 

  19. Lions P.L. (1984) The concentration-compactness principle in the calculus of variations. The locally compact case, Part II. Ann. Inst. H. Poincarè Anal. Non linèaire 1, 223–283

    MATH  Google Scholar 

  20. Ni W.-M., Takagi I. (1991) On the shape of least-energy solution to a semilinear Neumann problem. Comm. Pure Appl. Math. 44, 819–851

    MATH  MathSciNet  Google Scholar 

  21. Noussair E.S., Yan S. (2000) On positive multipeak solutions for a nonlinear elliptic problem. J. Lond. Math. Soc. 62, 213–227

    Article  MATH  MathSciNet  Google Scholar 

  22. Oh Y.G. (1988) Existence of semi-classical bound states of nonlinear Schrödinger equations with potential on the class (V)α. Comm. P. D. E. 13, 1499–1519

    MATH  Google Scholar 

  23. Oh Y.G. (1990) On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential. Comm. Math. Phys. 131, 223–253

    Article  MATH  MathSciNet  Google Scholar 

  24. Rabinowitz P.H. (1992) On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291

    Article  MATH  MathSciNet  Google Scholar 

  25. Wang X. (1993) On concertration of positive bound states of nonlinear Schrödinger equations. Comm. Math. Phys. 153, 229–244

    Article  MATH  MathSciNet  Google Scholar 

  26. Wang Z.Q. (1999) Existence and symmetry of multi-bump solutions for nonlinear Schrödinger equations. J. Diff. Equ. 159, 102–137

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuangjie Peng.

Additional information

Supported by the Fund for Distinguished Young Scholars of NSFC in China.

Supported by the Alexander von Humboldt foundation and NSFC(No:10571069).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, D., Peng, S. Multi-bump Bound States of Schrödinger Equations with a Critical Frequency. Math. Ann. 336, 925–948 (2006). https://doi.org/10.1007/s00208-006-0021-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-006-0021-y

Keywords

Mathematics Subject Classification (2000)

Navigation