Skip to main content
Log in

Lipschitz continuity, Aleksandrov theorem and characterizations for H-convex functions

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In the geometries of stratified groups, we show that H-convex functions locally bounded from above are locally Lipschitz continuous and that the class of v-convex functions exactly corresponds to the class of upper semicontinuous H-convex functions. As a consequence, v-convex functions are locally Lipschitz continuous in every stratified group. In the class of step 2 groups we characterize locally Lipschitz H-convex functions as measures whose distributional horizontal Hessian is positive semidefinite. In Euclidean space the same results were obtained by Dudley and Reshetnyak. We prove that a continuous H-convex function is a.e. twice differentiable whenever its second order horizontal derivatives are Radon measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Magnani, V.: Weak differentiability of BV functions on stratified groups. Math. Z. 245, 123–153 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. Oxford University Press, 2000

  3. Bakel'man, I.Ya.: Geometric methods of solutions of elliptic equations, (in Russian). Nauka, Moscow, 1965

  4. Balogh, Z., Rickly, M.: Regularity of convex functions on Heisenberg groups, preprint (2003)

  5. Bellaïche, A., Risler, J.J. eds,: Sub-Riemannian geometry, Progress in Mathematics, 144, Birkhäuser Verlag, Basel, 1996

  6. Bianchi, G., Colesanti, A., Pucci, C.: On the second order differentiability of convex surfaces. Geom. Dedicata 60, 39–48 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bieske, T.: On ∞-harmonic functions on the Heisenberg group. Comm. Partial Differential Equations 27(3,4), 727–762 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Caffarelli, L.A., Cabré, X.: Fully nonlinear elliptic equations. AMS Colloquium Publications 43, AMS, Providence, RI, 1995

  9. Danielli, D., Garofalo, N., Nhieu, D.M.: Notions of convexity in Carnot groups. Comm. Anal. Geom. 11(2), 263–341 (2003)

    MathSciNet  Google Scholar 

  10. Danielli, D., Garofalo, N., Nhieu, D.M., Tournier, F.: The theorem of Busemann- Feller-Alexandrov in Carnot groups. Comm. Anal. Geom. 12(4), 853–886 (2004)

    MathSciNet  Google Scholar 

  11. Dudley, R.M.: On second derivatives of convex functions. Math. Scand. 41(1), 159–174 (1977)

    MathSciNet  Google Scholar 

  12. Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. Studies in Advanced Mathematics, CRC Press, Boca Raton, 1992

  13. Federer, H.: Geometric Measure Theory. Springer, 1969

  14. Folland, G.B., Stein, E.M.: Hardy Spaces on Homogeneous groups. Princeton University Press, 1982

  15. Garofalo, N., Nhieu, D.M.: Lipschitz continuity, global smooth approximation and extension theorems for Sobolev functions in Carnot-Carathéodory spaces. Jour. Anal. Math. 74, 67–97 (1998)

    MATH  MathSciNet  Google Scholar 

  16. Gutirrez, C.E., Montanari, A.: On the second order derivatives of convex functions on the Heisenberg group. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 3(2), 349–366 (2004)

    Google Scholar 

  17. Gromov, M.: Carnot-Carathéodory spaces seen from within. Subriemannian Geometry, Progress in Mathematics, 144 ed. by A. Bellaiche and J. Risler, Birkhauser Verlag, Basel, 1996

  18. Hajlasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Amer. Math. Soc. 145, (2000)

  19. Hochschild, G.: The structure of Lie groups. Holden-Day, 1965

  20. Hörmander, L.: The Analysis of linear partial differential operators. Springer-Verlag, 1990

  21. Juutinen, P., Lu, G., Manfredi, J., Stroffolini, B.: Convex functions in Carnot groups, preprint (2005)

  22. Krylov, N.V.: Nonlinear elliptic and parabolic equations of the second order. Mathematics and its Applications, Reidel, 1987

  23. Lu, G., Manfredi, J., Stroffolini, B.: Convex functions on the Heisenberg group. Calc. Var. Partial Differential Equations 19(1), 1–22 (2004)

    Google Scholar 

  24. Lu, G., Manfredi, J., Stroffolini, B.: Convex functions in Carnot groups, forthcoming

  25. Magnani, V.: Differentiability from Sobolev-Poincaré inequality. Studia Math. 168(3), 251–272 (2005)

    MathSciNet  Google Scholar 

  26. Monti, R., Serra Cassano, F.: Surface measures in Carnot-Carathédory spaces. Calc. Var. 13(3), 339–376 (2001)

    MathSciNet  Google Scholar 

  27. Nagel, A., Stein, E.M., Wainger, S.: Balls and metrics defined by vector fields I: Basic properties. Acta Math. 155, 103–147 (1985)

    MATH  MathSciNet  Google Scholar 

  28. Pansu, P.: Métriques de Carnot-Carathéodory quasiisométries des espaces symétriques de rang un. Ann. Math. 129, 1–60 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  29. Reshetnyak, Yu.G.: Generalized derivatives and differentiability almost everywhere. Mat. Sb. 75, 323–334 (1968) (in Russian), Math. USSR-Sb. 4, 293–302 (English translation)

    MATH  MathSciNet  Google Scholar 

  30. Rickly, M.: On questions of existence and regularity related to notions of convexity in Carnot groups, Ph.D. thesis (2005)

  31. Rickly, M.: First order regularity of convex functions on Carnot groups, preprint (2005)

  32. Stein, E.M.: Harmonic Analysis. Princeton Univ. Press, 1993

  33. Trudinger, N.: On Hessian measures for non-commuting vector fields, ArXiv preprint: math.AP/0503695, (2005)

  34. Varadarajan, V.S.: Lie groups, Lie algebras and their representation. Springer-Verlag, New York, 1984

  35. Varopoulos, N.Th., Saloff-Coste, L., Coulhon, T.: Analysis and Geometry on Groups. Cambridge University Press, Cambridge, 1992

  36. Wang, C.: Viscosity convex functions on Carnot groups, 133(4), 1247–1253 (2005)

  37. Wang, C.: The Euler Equations of absolutely minimizing Lipschitz extensions for vector fields satisfying Hörmander condition, preprint (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentino Magnani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magnani, V. Lipschitz continuity, Aleksandrov theorem and characterizations for H-convex functions. Math. Ann. 334, 199–233 (2006). https://doi.org/10.1007/s00208-005-0717-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-005-0717-4

Keywords

Navigation