Skip to main content
Log in

Average homogeneity and dimensions of measures

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract.

We introduce the concept of average homogeneity of a measure by comparing the measure to the uniform distribution in a relatively simple way. This leads to a very general notion which may be regarded as an inverse of porosity. In this paper the emphasis is given to relations between homogeneity and dimensions of measures. First we consider the effect of homogeneity on dimensions by proving an upper bound to the Hausdorff dimension as a function of homogeneity and its order. The opposite question of how dimensions effect homogeneity is solved by giving an upper bound to homogeneity in terms of upper packing dimension. We also illustrate by examples that all our results are the best possible ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beliaev, D.B., Smirnov, S.K.: On dimension of porous measures. Math. Ann. 323, 123–141 (2002)

    Article  MATH  Google Scholar 

  2. Berlinkov, A., Järvenpää, E.: Porosities in Mandelbrot percolation. preprint 280 http://www.math.jyu.fi/tutkimus/julkaisut.html

  3. Billingsley, P.: Ergodic Theory and Information. John Wiley & Sons, New York, 1965

  4. Cutler, C.D.: Strong and weak duality principles for fractal dimension in Euclidean space. Math. Proc. Cambridge Philos. Soc. 118, 393–410 (1995)

    MATH  Google Scholar 

  5. Eckmann, J.-P., Järvenpää, E., Järvenpää, M.: Porosities and dimensions of measures. Nonlinearity 13, 1–18 (2000)

    Google Scholar 

  6. Falconer, K.J.: Techniques in fractal geometry. John Wiley & Sons, Chichester, 1997

  7. Heurteaux, Y.: Estimations de la dimension inférieure et de la dimension supérieure des mesures. Ann. Inst. H. Poincaré Probab. Statist. 34, 309–338 (1998)

    Article  MATH  Google Scholar 

  8. Järvenpää, E., Järvenpää, M.: Porous measures on ℝn: local structure and dimensional properties. Proc. Amer. Math. Soc. 130, 419–426 (2001)

    Google Scholar 

  9. Kechris, A.S.: Classical Descriptive Set Theory. Springer Verlag, New York, 1995

  10. Koskela, P., Rohde, S.: Hausdorff dimension and mean porosity. Math. Ann. 309, 593–609 (1997)

    Article  MATH  Google Scholar 

  11. Mattila, P.: Distribution of sets and measures along planes. Proc. London Math. Soc. 38(2), 125–132 (1998)

    MATH  Google Scholar 

  12. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces: Fractals and rectifiability. Cambridge University Press, Cambridge, 1995

  13. Mera, M.E., Morán, M.: Attainable values for upper porosities of measures. Real. Anal. Exchange 26, 101–115 (2000/01)

    Google Scholar 

  14. Mera, M.E., Morán, M., Preiss, D., Zajíček, L.: Porosity, σ-porosity and measures. Nonlinearity 16, 247–255 (2003)

    Article  MATH  Google Scholar 

  15. Salli, A.: On the Minkowski dimension of strongly porous fractal sets in ℝn. Proc. London Math. Soc. 62(3), 353–372 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esa Järvenpää.

Additional information

Mathematics Subject Classification (2000): 28A75, 28A80

MJ acknowledges the support of the Academy of Finland, project #48557.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Järvenpää, E., Järvenpää, M. Average homogeneity and dimensions of measures. Math. Ann. 331, 557–576 (2005). https://doi.org/10.1007/s00208-004-0595-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-004-0595-1

Keywords

Navigation