Skip to main content
Log in

Building Kohn–Sham Potentials for Ground and Excited States

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We analyze the inverse problem of Density Functional Theory using a regularized variational method. First, we show that given k and a target density \(\rho \), there exist potentials having kth bound mixed states which densities are arbitrarily close to \(\rho \). The state can be chosen pure in dimension \(d=1\) and without interactions, and we provide numerical and theoretical evidence consistently leading us to conjecture that the same pure representability result holds for \(d=2\), but that the set of pure-state v-representable densities is not dense for \(d=3\). Finally, we present an inversion algorithm taking into account degeneracies, removing the generic blocking behavior of standard ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Accorto, G., Brandolini, P., Marino, F., Porro, A., Scalesi, A., Colò, G., Roca-Maza, X., Vigezzi, E.: First step in the nuclear inverse Kohn–Sham problem: from densities to potentials. Phys. Rev. C 101, 024315, 2020

    Article  ADS  Google Scholar 

  2. Alfonsi, A., Coyaud, R., Ehrlacher, V., Lombardi, D.: Approximation of optimal transport problems with marginal moments constraints. Math. Comput., 2020

  3. Babuška, I., Melenk, J.M.: The partition of unity method. Int. J. Numer. Methods Eng. 40, 727–758, 1997

    Article  MathSciNet  MATH  Google Scholar 

  4. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing. SIAM Rev. 59, 65–98, 2017

    Article  MathSciNet  MATH  Google Scholar 

  5. Callow, T.J., Lathiotakis, N.N., Gidopoulos, N.I.: Density-inversion method for the Kohn–Sham potential: role of the screening density. J. Chem. Phys 152, 164114, 2020

    Article  ADS  Google Scholar 

  6. Cancès, É, SCF algorithms for HF electronic calculations. Mathematical models and methods for ab initio quantum chemistry, vol. 74 of Lecture Notes in Chem, Springer, Berlin, ch. 2, pp. 17–43, 2000

  7. Cancès, É., Le Bris, C.: Can we outperform the DIIS approach for electronic structure calculations? Int. J. Quantum Chem 79, 82–90, 2000

    Article  Google Scholar 

  8. Cancès, É., Le Bris, C.: On the convergence of SCF algorithms for the Hartree–Fock equations, M2AN Math. Model. Numer. Anal. 34, 749–774, 2000

    Article  MathSciNet  MATH  Google Scholar 

  9. Cancès, E., Mourad, N.: A mathematical perspective on density functional perturbation theory. Nonlinearity 27, 1999, 2014

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Cernatic, F., Senjean, B., Robert, V., Fromager, E.: Ensemble density functional theory of neutral and charged excitations. Top. Curr. Chem 380, 1–80, 2022

    Google Scholar 

  11. Chayes, J., Chayes, L., Lieb, E.H.: The inverse problem in classical statistical mechanics. Commun. Math. Phys 93, 57–121, 1984

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Chayes, J., Chayes, L., Ruskai, M.B.: Density functional approach to quantum lattice systems. J. Stat. Phys 38, 497–518, 1985

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Chua, S.-K., Wheeden, R.L.: Estimates of best constants for weighted Poincaré inequalities on convex domains. Proc. Lond. Math. Soc. 93, 197–226, 2006

    Article  MATH  Google Scholar 

  14. Coyaud, R., Study of Approximations of Optimal Transport Problems and Application to Physics, Ph.D. thesis, 2021. Ph.D. thesis directed by Alfonsi, Aurélien and Ehrlacher, Virginie, Mathématiques Paris Est, 2021

  15. Engel, E., Dreizler, R.: Density Functional Theory: An Advanced Course, Theoretical and Mathematical Physics. Springer, 2011

  16. Englisch, H., Englisch, R.: Hohenberg–Kohn theorem and non-V-representable densities. Physica A Stat. Mech. Appl. 121, 253–268, 1983

    Article  ADS  MathSciNet  Google Scholar 

  17. Fournais, S., Lewin, M., Solovej, J.P.: The semi-classical limit of large fermionic systems. Calc. Var. Partial Differ. Equ 57, 1–42, 2018

    Article  MathSciNet  MATH  Google Scholar 

  18. Freed, K.F., Levy, M.: Direct first principles algorithm for the universal electron density functional. J. Chem. Phys 77, 396–398, 1982

    Article  ADS  Google Scholar 

  19. Garrigue, L.: Unique continuation for many-body Schrödinger operators and the Hohenberg–Kohn theorem. Math. Phys. Anal. Geom 21, 27, 2018

    Article  MathSciNet  MATH  Google Scholar 

  20. Garrigue, L., Unique Continuation for Many-body Schrödinger Operators and the Hohenberg–Kohn Theorem. II. The Pauli Hamiltonian. Doc. Math., 2020

  21. Garrigue, L.: Some properties of the potential-to-ground state map in quantum mechanics. Commun. Math. Phys. 386, 1803–1844, 2021

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Gaudoin, R., Burke, K.: Lack of Hohenberg–Kohn theorem for excited states. Phys. Rev. Lett 93, 173001, 2004

    Article  ADS  Google Scholar 

  23. Giuliani, G., Vignale, G.: Quantum Theory of the Electron Liquid. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  24. Gonis, A., Däne, M.: On the v-representability of ensemble densities of electron systems. J. Phys. Chem. Solids 116, 100–112, 2018

    Article  ADS  Google Scholar 

  25. Gross, E.K.U., Oliveira, L.N., Kohn, W.: Rayleigh-Ritz variational principle for ensembles of fractionally occupied states. Phys. Rev. A 37, 2805–2808, 1988

    Article  ADS  MathSciNet  Google Scholar 

  26. Harriman, J.E.: Orthonormal orbitals for the representation of an arbitrary density. Phys. Rev. A 24, 680–682, 1981

    Article  ADS  Google Scholar 

  27. Herbst, M. F., Levitt, A., Kemlin, G., Sirajdine, S., Berquist, E., Ponet, L., Tzsuzsi, Juliamolsim/dftk.jl: v0.2.3, 2020.

  28. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871, 1964

    Article  ADS  MathSciNet  Google Scholar 

  29. Jensen, D.S., Wasserman, A.: Numerical methods for the inverse problem of density functional theory. Int. J. Quantum Chem. 118, e25425, 2018

    Article  Google Scholar 

  30. Kanungo, B., Zimmerman, P.M., Gavini, V.: Exact exchange-correlation potentials from ground-state electron densities. Nat. Commun. 10, 1–9, 2019

    Article  ADS  Google Scholar 

  31. Kato, T.: On the eigenfunctions of many-particle systems in quantum mechanics. Commun. Pure Appl. Math 10, 151–177, 1957

    Article  MathSciNet  MATH  Google Scholar 

  32. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. (2) 140, A1133–A1138, 1965

    Article  ADS  MathSciNet  Google Scholar 

  33. Kumar, A., Singh, R., Harbola, M.K.: Universal nature of different methods of obtaining the exact Kohn–Sham exchange-correlation potential for a given density. J. Phys. B 52, 075007, 2019

    Article  ADS  Google Scholar 

  34. Lazarev, O., Lieb, E.H.: A smooth, complex generalization of the Hobby–Rice theorem. Indiana Univ. Math. J. 62, 1133–1141, 2013

    Article  MathSciNet  MATH  Google Scholar 

  35. Leoni, G., A First Course in Sobolev Spaces, American Mathematical Society, 2017

  36. Levy, M.: Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the \(v\)-representability problem. Proc. Natl. Acad. Sci. USA 76, 6062–6065, 1979

    Article  ADS  MathSciNet  Google Scholar 

  37. Lewin, M.: Geometric methods for nonlinear many-body quantum systems. J. Funct. Anal. 260, 3535–3595, 2011

    Article  MathSciNet  MATH  Google Scholar 

  38. Lewin, M., Lieb, E.H., Seiringer, R.: Statistical mechanics of the uniform electron gas. J. Éc. Polytech. Math 5, 79–116, 2018

    Article  MathSciNet  MATH  Google Scholar 

  39. Lewin, M., Lieb, E.H., Seiringer, R.: The local density approximation in density functional theory. Pure Appl. Anal. 2, 35–73, 2019

    Article  MathSciNet  MATH  Google Scholar 

  40. Lewin, M., Lieb, E. H., Seiringer, R., Universal Functionals in Density Functional Theory, arXiv preprint arXiv:1912.10424, 2019

  41. Lieb, E.H.: Density functionals for Coulomb systems. Int. J. Quantum Chem. 24, 243–277, 1983

    Article  Google Scholar 

  42. Lieb, E. H., Density Functional Methods in Physics, NATO ASI Series B, 123, (1985)

  43. Lieb, E.H., Loss, M.: Analysis, vol. 14, 2nd edn. Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2001

  44. Lieb, E. H., Thirring, W. E., Inequalities for the Moments of the Eigenvalues of the Schrödinger Hamiltonian and their Relation to Sobolev Inequalities, Studies in Mathematical Physics, Princeton University Press, pp. 269–303, 1976

  45. Melenk, J.M., Babuška, I.: The partition of unity finite element method: basic theory and applications, Research Report/Seminar für Angewandte Mathematik, vol. 1996. Eidgenössische Technische Hochschule, Seminar für Angewandte Mathematik, 1996

  46. Moreno, J.R., Carleo, G., Georges, A.: Deep learning the Hohenberg–Kohn maps of density functional theory. Phys. Rev. Lett 125, 076402, 2020

    Article  ADS  MathSciNet  Google Scholar 

  47. Naito, T., Ohashi, D., Liang, H.: Improvement of functionals in density functional theory by the inverse Kohn–Sham method and density functional perturbation theory. J. Phys. B 52, 245003, 2019

    Article  ADS  Google Scholar 

  48. Penz, M., Laestadius, A., Tellgren, E.I., Ruggenthaler, M.: Guaranteed convergence of a regularized Kohn–Sham iteration in finite dimensions. Phys. Rev. Lett 123, 037401, 2019

    Article  ADS  MathSciNet  Google Scholar 

  49. Penz, M., Laestadius, A., Tellgren, E.I., Ruggenthaler, M., Lammert, P.E.: Erratum: Guaranteed convergence of a regularized Kohn–Sham iteration in finite dimensions. Phys. Rev. Lett. 125, 249902, 2020

    Article  ADS  MathSciNet  Google Scholar 

  50. Poliquin, R.A., Rockafellar, R.T.: Generalized hessian properties of regularized nonsmooth functions. SIAM J. Optim. 6, 1121–1137, 1996

    Article  MathSciNet  MATH  Google Scholar 

  51. Schnieders, D., Neugebauer, J.: Accurate embedding through potential reconstruction: a comparison of different strategies. J. Chem. Phys. 149, 054103, 2018

    Article  ADS  Google Scholar 

  52. Shapiro, A., Fan, M.K.: On eigenvalue optimization. SIAM J. Optim. 5, 552–569, 1995

    Article  MathSciNet  MATH  Google Scholar 

  53. Wagner, L.O., Baker, T.E., Stoudenmire, E., Burke, K., White, S.R.: Kohn–Sham calculations with the exact functional. Phys. Rev. B 90, 045109, 2014

    Article  ADS  Google Scholar 

  54. Wu, Q., Yang, W.: A direct optimization method for calculating density functionals and exchange-correlation potentials from electron densities. J. Chem. Phys 118, 2498–2509, 2003

    Article  ADS  Google Scholar 

  55. Zeidler, E.: Nonlinear Functional Analysis and its Applications. Variational Methods and Optimization, vol. 3. Springer, Berlin, 2013

  56. Zeidler, E.: Nonlinear Functional Analysis and Its Applications. IV, Applications to Mathematical Physics, Springer, 2013

Download references

Acknowledgements

I warmly thank Mathieu Lewin, for having advised me during this work, and Éric Cancès for useful comments. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreements MDFT No 725528 and EMC2 No 810367). Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Garrigue.

Additional information

Communicated by G. Friesecke.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garrigue, L. Building Kohn–Sham Potentials for Ground and Excited States. Arch Rational Mech Anal 245, 949–1003 (2022). https://doi.org/10.1007/s00205-022-01804-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-022-01804-1

Navigation