Skip to main content
Log in

Partially Regular Weak Solutions of the Navier–Stokes Equations in \(\mathbb {R}^4 \times [0,\infty [\)

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We show that for any given solenoidal initial data in \(L^2\) and any solenoidal external force in \(L_{\text {loc}}^q \bigcap L^{3/2}\) with \(q>3\), there exist partially regular weak solutions of the Navier–Stokes equations in \(\mathbb {R}^4 \times [0,\infty [\) which satisfy certain local energy inequalities and whose singular sets have a locally finite 2-dimensional parabolic Hausdorff measure. With the help of a parabolic concentration-compactness theorem we are able to overcome the possible lack of compactness arising in the spatially 4-dimensional setting by using defect measures, which we then incorporate into the partial regularity theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. One can see Lemma 2.6 in Scheffer [22] for details.

References

  1. Biryuk, A., Craig, W., Ibrahim, S.: Construction of suitable weak solutions of the Navier-Stokes equations. Contemp. Math. 429, 1, 2007

    Article  MathSciNet  Google Scholar 

  2. Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier-Stokes equations. Commun. Pure Appl. Math. 35(6), 771–831, 1982

    Article  ADS  MathSciNet  Google Scholar 

  3. Choe, H., Yang, M.: Hausdorff measure of the singular set in the incompressible magnetohydrodynamic equations. Commun. Math. Phys. 336(1), 171–198, 2015

    Article  ADS  MathSciNet  Google Scholar 

  4. Dong, H., Du, D.: Partial regularity of solutions to the four-dimensional Navier-Stokes equations at the first blow-up time. Commun. Math. Phys. 273(3), 785–801, 2007

    Article  ADS  MathSciNet  Google Scholar 

  5. Dong, H., Gu, X.: Partial regularity of solutions to the four-dimensional Navier-Stokes equations. Dyn. Partial Differ. Equ. 11(1), 53–69, 2014

    Article  MathSciNet  Google Scholar 

  6. Fefferman, C., Phong, D.: On positivity of pseudo-differential operators. Proc. Nat. Acad. Sci. U.S.A. 75(10), 4673, 1978

    Article  ADS  MathSciNet  Google Scholar 

  7. Frehse, J., R\(\mathring{\rm u}\)žička, M.: Regularity for the stationary Navier–Stokes equations in bounded domain. Arch. Ration. Mech. Anal.128(4), 361–380, 1994

  8. Frehse, J., R\(\mathring{\rm u}\)žička, M.: Existence of regular solutions to the stationary Navier–Stokes equations. Math. Ann.302(1), 699–717, 1995

  9. Frehse, J., Ružička, M.: Existence of regular solutions to the steady Navier-Stokes equations in bounded six-dimensional domains. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 23(4), 701–719, 1996

    MathSciNet  MATH  Google Scholar 

  10. Gallagher, I., Koch, G., Planchon, F.: Blow-up of critical Besov norms at a potential Navier-Stokes singularity. Commun. Math. Phys. 343(1), 39–82, 2016

    Article  ADS  MathSciNet  Google Scholar 

  11. Gu, X.: Regularity criteria for suitable weak solutions to the four dimensional incompressible magneto-hydrodynamic equations near boundary. J. Differ. Equ. 259(4), 1354–1378, 2015

    Article  ADS  MathSciNet  Google Scholar 

  12. Guan, P.: \(C^2\) a priori estimates for degenerate Monge-Ampere equations. Duke Math. J. 86(2), 323–346, 1997

    Article  MathSciNet  Google Scholar 

  13. Hopf, E.: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet, Mathematische Nachrichten 4(1–6), 213–231, 1950

  14. Ladyzhenskaya O.A.: Solution “in the large” to the boundary-value problem for the Navier–Stokes equations in two space variables. Doklady Akademii Nauk 123(3), 427–429, Russian Academy of Sciences, 1958

  15. Leray, J.: Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique. Gauthier-Villars 1933

  16. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63(1), 193–248, 1934

    Article  MathSciNet  Google Scholar 

  17. Lin, F.H.: A new proof of the Caffarelli-Kohn-Nirenberg theorem. Commun. Pure Appl. Math. 51(3), 241–257, 1998

    Article  MathSciNet  Google Scholar 

  18. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The limit case, part 1. Revista matematica iberoamericana 1(1), 145–201, 1985

  19. Lopes Filho, M.C., Nussenzveig Lopes, H.J.: Pointwise blow-up of sequences bounded in \(L^1\). J. Math. Anal. Appl. 263(2), 447–54, 2001

    Article  MathSciNet  Google Scholar 

  20. Robinson, J.C., Rodrigo, J.L., Sadowski, W.: The Three-Dimensional Navier-Stokes Equations: Classical Theory. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge 2016

    Book  Google Scholar 

  21. Scheffer, V.: Hausdorff measure and the Navier-Stokes equations. Commun. Math. Phys. 55(2), 97–112, 1977

    Article  ADS  MathSciNet  Google Scholar 

  22. Scheffer, V.: The Navier-Stokes equations in space dimension four. Commun. Math. Phys. 61(1), 41–68, 1978

    Article  ADS  MathSciNet  Google Scholar 

  23. Scheffer, V.: The Navier-Stokes equations on a bounded domain. Commun. Math. Phys. 73(1), 1–42, 1980

    Article  ADS  MathSciNet  Google Scholar 

  24. Simon, J.: Compact sets in the space \(L^p(O, T;B)\). Annali di Matematica 146(1), 65–96, 1986

    Article  Google Scholar 

  25. Struwe, M.: On partial regularity results for the Navier-Stokes equations. Commun. Pure Appl. Math. 41(4), 437–458, 1988

    Article  MathSciNet  Google Scholar 

  26. Struwe, M.: Regular solutions of the stationary Navier-Stokes equations on \(\mathbb{R}^5\). Math. Ann. 302(1), 719–741, 1995

    Article  MathSciNet  Google Scholar 

  27. Taniuchi, Y.: On generalized energy equality of the Navier-Stokes equations. Manuscr. Math. 94(1), 365–384, 1997

    Article  MathSciNet  Google Scholar 

  28. Wang, Y., Wu, G.: A unified proof on the partial regularity for suitable weak solutions of non-stationary and stationary Navier-Stokes equations. J. Differ. Equ. 256(3), 1224–1249, 2014

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to express my gratitude to my advisor Michael Struwe for reading my draft carefully and giving me helpful feedback. I would also like to thank the referees for very useful comments to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bian Wu.

Additional information

Communicated by V. Šverák

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Fractional Power of Nonnegative Smooth Function

Fractional Power of Nonnegative Smooth Function

In this appendix, we prove that certain fractional power of any nonnegative smooth function is Lipschitz continuous, which is a direct consequence of the following lemma proved by Fefferman and Phong [6].

Lemma 5.1

(Fefferman and Phong [6]; Lemma 4, Guan [12]) If \(f:\mathbb {R}^n \rightarrow \mathbb {R}\) is a \(C^{3,1}\) nonnegative function, with \(\Vert f\Vert _{C^4} {\,\leqq \,}A\), then there is \(N \in \mathbb {N}\) (only depends on n) and functions \(g_1, g_2, \ldots , g_N \in C^{1,1}\), with \(\Vert g_j\Vert _{C^2} {\,\leqq \,}C\), such that

$$\begin{aligned} f=\sum _{j=1}^{N} g_j^2, \end{aligned}$$

where the constant C depends on n and A.

Corollary 5.1

Suppose \(f:\mathbb {R}^n \rightarrow \mathbb {R}\) is a \(C^{3,1}\) nonnegative function, then \(h:{=}f^{\alpha }\) is Lipschitz continuous for any \(\alpha \in [\frac{1}{2},1]\).

Proof

This result follows from Lemma 5.1 and the bound

$$\begin{aligned} \begin{aligned} |h'|&= \frac{2\alpha \big |\sum _{j=1}^{N}g_jg'_j\big |}{\big (\sum _{i=1}^{N} g_i^2\big )^{1-\alpha }} \\&{\,\leqq \,}\sum _{j=1}^{N} \frac{2\alpha \big |g_j^{2\alpha -1}g'_j\big |}{\big (\sum _{i=1}^{N} (g_i/g_j)^2\big )^{1-\alpha }} \\&{\,\leqq \,}\sum _{j=1}^{N} 2\alpha \big |g_j^{2\alpha -1}g'_j\big |. \end{aligned} \end{aligned}$$

   \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, B. Partially Regular Weak Solutions of the Navier–Stokes Equations in \(\mathbb {R}^4 \times [0,\infty [\). Arch Rational Mech Anal 239, 1771–1808 (2021). https://doi.org/10.1007/s00205-020-01603-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-020-01603-6

Navigation