Skip to main content
Log in

A Conceptual Approach to the Problem of Action-Angle Variables

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper we develop a general conceptual approach to the problem of existence of action-angle variables for dynamical systems, which establishes and uses the fundamental conservation property of associated torus actions: anything which is preserved by the system is also preserved by the associated torus actions. This approach allows us to obtain, among other things: (a) the shortest and most easy-to-understand conceptual proof of the classical Arnold–Liouville–Mineur theorem; (b) basically all known results in the literature about the existence of action-angle variables in various contexts can be recovered in a unifying way, with simple proofs, using our approach; (c) new results on action-angle variables in many different contexts, including systems on contact manifolds, systems on presymplectic and Dirac manifolds, action-angle variables near singularities, stochastic systems, and so on. Even when there are no natural action variables, our approach still leads to useful normal forms for dynamical systems, which are not necessarily integrable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, R., Marsden, J.E.: Foundation of Mechanics, 2nd edn, revised and enlarged. With the assistance of Tudor Ratiu and Richard Cushman. Benjamin/Cummings Publishing Co., 1978

  2. Arnold, V.I.: Arnold’s Problems. Springer, Berlin (2004)

    Google Scholar 

  3. Arnold, V.I.: Mathematical Methods of Clasical Mechanics, 2nd edn, Chap. 10. Springer, Berlin, 1989

  4. Arnold, V.I., Kozlov, V.V., Neishtadt, A.I. (eds.): Mathematical Aspects of Classical and Celestial Mechanics, Vol. III of Dynamical Systems in the Encyclopædia of Mathematical Sciences. Springer, Berlin, 1987

  5. Banyaga, A., Molino, P.: Géométrie des formes de contact complètement intégrables de type toriques, Séminaire Gaston Darboux de Géométrie et Topologie Différentielle, 1991–1992 (Montpellier), 1–25

  6. Bergia, S.; Navarro, L.: On the early history of Einstein’s quantization rule of 1917. Archives internationales d’histoire des sciences 50(145), 321–373 (2000)

    MathSciNet  MATH  Google Scholar 

  7. Birkhoff, G.D.: Dynamical Systems, 2nd edn. AMS Colloq. Publ., No. 9, Providence, 1927

  8. Bogoyavlenskij, O.I.: Extended integrability and bi-Hamiltonian systems. Commun. Math. Phys. 196(1), 19–51 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Bolsinov, A., Morales-Ruiz, J., Zung, N.T.: Geometry and Dynamics of Integrable Systems, Advanced Courses in Mathematics—CRM Barcelona. Birkhäuser, 2016

  10. Boyer, C.P.: Completely integrable contact Hamiltonian systems and toric contact structures on \(S^2\times S^3\). SIGMA 7, 058 (2011)

    MATH  Google Scholar 

  11. Broer, H.W., Sevryuk, M.B.: Chapter 6—KAM theory: quasi-periodicity of dynamical systems. Handb. Dyn. Syst., 3 249–344 (2010)

  12. Burgers, J.M.: Die adiabatis hen Invarianten bedingt periodis her Systeme. Annalen der Physik 357(2), 195–202 (1917)

    Article  ADS  Google Scholar 

  13. Bursztyn, H.: A brief introduction to Dirac manifolds, Chapter 1 of Geometric and Topological Methods for Quantum Field Theory, Proceedings of the 2009 Villa de Leyva Summer School, Cambridge, 2013

  14. Chiba, H.: Extension and unification of singular perturbation methods for ODEs based on the renormalization group method. SIAM J. Appl. Dyn. Syst. 8(3), 1066–1115 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Courant, T.: Dirac manifolds. Trans. Am. Math. Soc. 319, 631–661 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Courant, T., Weinstein, A.: Beyond Poisson structures, Séminaire sudrhodanien de géométrie VIII. Travaux en Cours 27, Hermann, Paris, 39–49, 1988

  17. Dazord, P.; Delzant, T.: Le problème général des variables actions-angles. J. Differential Geom. 26(2), 223–251 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dorfman, I.: Ya.: Dirac structures of integrable evolution equations. Phys. Lett. A 125(5), 240–246 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  19. Dumas, H.S.: The KAM Story. World Scientific, Singapore (2014)

    Book  MATH  Google Scholar 

  20. Dufour, J.-P., Molino, P.: Compactification d’action de \(\mathbb{R}^n\) et variables action-angle avec singularités, MSRI Publ., Vol. 20, (Eds. Dazord P. and Weinstein A.), Séminaire Sud-Rhodanien de Géométrie, Berkeley, 1989, 151–167, 1990

  21. Dufour, J.P., Zung, N.T.: Poisson structures and their normal forms. In: Progress in Mathematics, Vol. 242, 2005

  22. Duistermaat, J.J.: On global action-angle variables. Commun. Pure Appl. Math. 33, 687–706 (1980)

    Article  MATH  Google Scholar 

  23. Eliasson, H.: Normal form of Hamiltonian systems with Poisson commuting integrals–elliptic case. Comment. Math. Helv. 65, 4–35 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  24. Einstein, A.: Zum Quantensatz von Sommerfeld und Epstein. Verhandlungen der Deutschen Physikalischen Gesellschaft 19, 82–92 (1917)

    Google Scholar 

  25. Fassò, F.; Sansonetto, N.: Integrable almost-symplectic Hamiltonian systems. J. Math. Phys. 48(9), 092902 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Féjoz, J.: On action-angle coordinates and on the Poincaré coordinates. Regul. Chaotic Dyn. 18(6), 703–718 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Gelfand, I.M.; Dorfman, I.Y.: Hamiltonian operators and algebraic structures related to them. Funct. Anal. Appl. 13, 248–262 (1979)

    Article  Google Scholar 

  28. Guillemin, V.; Sternberg, S.: Symplectic Techniques in Physics, 2nd edn. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  29. Hofer, H.; Zehnder, E.: Symplectic Invariants and Hamiltonian Dynamics, reprint of the, 1994th edn. Modern Birkhäuser Classics. Birkhäuser Verlag, Basel (2011)

    Book  MATH  Google Scholar 

  30. Ito, H.: Convergence of Birkhoff normal forms for integrable systems. Comment. Math. Helv. 64, 412–461 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ito, H.: Integrability of Hamiltonian systems and Birkhoff normal forms in the simple resonance case. Math. Ann. 292(3), 411–444 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jovanovic, B.: Noncommutative integrability and action-angle variables in contact geometry. J. Symplectic Geom. 10(4), 535–561 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jovanovic, B.; Jovanovic, V.: Contact flows and integrable systems. J. Geom. Phys. 87, 217–232 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Kappeler, T., Kodama, Y., Némethi, A.: On the Birkhoff normal form of a completely integrable Hamiltonian system near a fixed point with resonance. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), XXVI, 623–661 (1998)

  35. Kappeler, T.; Lohrmann, P.; Topalov, P.; Zung, N.T.: Birkhoff coordinates for the focusing NLS equation. Commun. Math. Phys. 285(3), 1087–1107 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Kappeler, T.; Pöschel, J.: KdV and KAM, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 45. Springer, Berlin (2003)

    MATH  Google Scholar 

  37. Khesin, B.; Tabachnikov, S.: Contact complete integrability. Regul. Chaotic Dyn. 15(4–5), 504–520 (2010)

    Article  Google Scholar 

  38. Kosmann-Schwarzbach, Y.: Dirac pairs. J. Geom. Mech. 4(2), 165–180 (2012)

    Article  Google Scholar 

  39. Kuksin, S.; Perelman, G.: Vey theorem in infinite dimensions and its application to KdV. Discrete Contin. Dyn. Syst. Ser. A 27(1), 1–24 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Laurent-Gengoux, C.; Miranda, E.; Vanhaecke, P.: Action-angle coordinates for integrable systems on Poisson manifolds. Int. Math. Res. Not. 8, 1839–1869 (2011)

    MathSciNet  MATH  Google Scholar 

  41. Lerman, E.: Contact toric manifolds. J. Symplectic Geom. 1(4), 785–828 (2002)

    Article  Google Scholar 

  42. Levi-Civita, T.: Sugli invarianti adiabati, Atti del Congresso internazionale dei Fisici, 1927

  43. Lewis, H.R.; Lawrence, W.E.; Harris, J.D.: Quantum action-angle variables for the harmonic oscillator. Phys. Rev. Lett. 77(26), 5157–5159 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Libermann, C.: Legendre foliations on contact manifolds. Differ. Geom. Appl. 1(1), 57–76 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  45. Libermann, P.; Marle, C.M.: Symplectic Geometry and Analytical Mechanics. Kluwer Academic Publishers, Dordrecht (1987)

    Book  MATH  Google Scholar 

  46. Liouville, J.: Note sur l’intégration des équations differentielles de la dynamique, présentée au bureau des longitudes le 29 juin 1853. Journal de Mathématiques pures et appliquées 20, 137–138 (1855)

    Google Scholar 

  47. Markus, L., Meyer, K.: Generic Hamiltonian dynamical systems are neither integrable nor ergodic. Memoirs of the AMS, Vol. 144, Chap. 3, 1974

  48. Mineur, H.: Sur les systèmes mécaniques admettant n intégrales premières uniformes et l’extension a ces systèmes de la méthode de quantification de Sommerfeld. C. R. Acad. Sci. Paris 200, 1571–1573 (1935)

    MATH  Google Scholar 

  49. Mineur, H.: Sur les systèmes mécaniques dans lesquels figurent des paramètres fonctions du temps. Etude des systèmes admettant n intégrales premières uniformes en involution. Extension a ces systèmes des conditions de quantification de Bohr–Sommerfeld. Journal de l’Ecole Polytechnique III 143, 173–191, 237–270 (1937)

  50. Minh, N.V., Zung, N.T.: Geometry of integrable dynamical systems on 2-dimensional surfaces. Acta Math. Vietnamica 38(1), 79–106 (2013)

  51. Miranda, E.: On Symplectic Linearization of Singular Lagrangian Foliations. Ph.D. thesis, 2003

  52. Miranda, E., Zung, N.T.: Equivariant normal form for nondegenerate singular orbits of integrable Hamiltonian systems, Ann. Sci. École Norm. Sup. (4) 37(6), 819–839 (2004)

  53. Mishchenko, A.S.; Fomenko, A.T.: Generalized Liouville method of integration of Hamiltonian systems. Funct. Anal. Appl. 12, 113–121 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  54. Nekhoroshev, N.N.: Action-angle variables and their generalizations. Trans. Moskow Math. Soc. 26, 180–198 (1972)

    MathSciNet  MATH  Google Scholar 

  55. Raissy, J.: Torus action in the normalization problem. J. Geom. Anal. 20, 472–524 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  56. Ratiu, T., Zung, N.T.: Presymplectic convexity and (ir)rational polytopes. Preprint arXiv:1705.11110, 2017

  57. Rüssmann, H.: Uber das Verhalten analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung. Math. Ann. 154, 285–300 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  58. Ševera, P.; Weinstein, A.: Poisson geometry with a 3-form background. Prog. Theor. Phys. 144, 145–154 (2002)

    Article  MATH  Google Scholar 

  59. Stolovitch, L.: Singular complete integrability. Publ. IHES 91, 134–210 (2000)

    Google Scholar 

  60. Stolovitch, L.: Normalisation holomorphe d’algèbres de type Cartan de champs de vecteurs holomorphes singuliers. Ann. Math. 161, 589–612 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  61. Vey, J.: Sur certaines systèmes dynamiques séparables. Am. J. Math. 100, 591–614 (1978)

    Article  MATH  Google Scholar 

  62. Vey, J.: Algèbres commutatives de champs de vecteurs isochores. Bull. Soc. Math. Fr. 107, 423–432 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  63. Webster, S.M.: Quadrics and complete integrability in contact geometry. Commun. Pure Appl. Math. 56(7), 824–838 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  64. San, V.N.: Symplectic Techniques for Semiclassical Completely Integrable Systems, in Topological Methods in the Theory of Integrable Systems (Eds. Bolsinov A.V., Fomenko A.T. and Oshemkov A.A.), Cambridge Scientific Publications, 2006

  65. Weinstein, A.: Lectures on Symplectic Manifolds, Conference Board of the Mathematical Sciences, No. 29, 1977

  66. Weinstein, A.: The local structure of Poisson manifolds. J. Differ. Geom. 18(3), 523–557 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  67. Zung, N.T.: Symplectic topology of integrable Hamiltonian systems. I. Arnold-Liouville with singularities. Compos. Math. 101(2), 179–215 (1996)

    MATH  Google Scholar 

  68. Zung, N.T.: Kolmogorov condition for integrable systems with focus-focus singularities. Phys. Lett. A 215(1–2), 40–44 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Zung, N.T.: Convergence versus integrability in Poincaré-Dulac normal form. Math. Res. Lett. 9(2–3), 217–228 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  70. Zung, N.T.: Actions toriques et groupes d’automorphismes de singularités des systèmes dynamiques intégrables. C. R. Math. 336(12), 1015–1020 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  71. Zung, N.T.: Symplectic topology of integrable Hamiltonian systems II. Topological classification. Compos. Math. 138(2), 125–156 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  72. Zung, N.T.: Convergence versus integrability in Birkhoff normal form. Ann. Math. (2) 161 (1), 141–156 (2005)

  73. Zung, N.T.: Torus actions and integrable systems, in Topological Methods in the Theory of Integrable Systems (Eds. Bolsinov A.V., Fomenko A.T. and Oshemkov A.A.), Cambridge Scientific Publications, 289–328, 2006

  74. Zung, N.T.; Minh, T.H.: Commuting foliations. Regul. Chaotic Dyn. 18(6), 608–622 (2013)

    Article  ADS  Google Scholar 

  75. Zung, N.T., Thien, N.T.: Reduction and integrability of stochastic dynamical systems. Fundamentalnaya i Prikladnaya Matematika (Fundam. Appl. Math.) 20(3), 213–249 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Tien Zung.

Additional information

Communicated by Paul Rabinowitz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zung, N.T. A Conceptual Approach to the Problem of Action-Angle Variables. Arch Rational Mech Anal 229, 789–833 (2018). https://doi.org/10.1007/s00205-018-1227-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-018-1227-3

Navigation