Skip to main content
Log in

Existence of Torsional Solitons in a Beam Model of Suspension Bridge

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This paper studies the existence of solitons, namely stable solitary waves, in an idealized suspension bridge. The bridge is modeled as an unbounded degenerate plate, that is, a central beam with cross sections, and displays two degrees of freedom: the vertical displacement of the beam and the torsional angles of the cross sections. Under fairly general assumptions, we prove the existence of solitons. Under the additional assumption of large tension in the sustaining cables, we prove that these solitons have a nontrivial torsional component. This appears relevant for security since several suspension bridges collapsed due to torsional oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammann, O.H., von Kármán, T., Woodruff, G.B.: The Failure of the Tacoma Narrows Bridge. Federal Works Agency, Washington, DC, 1941

  2. Al-Gwaiz M., Benci V., Gazzola F.: Bending and stretching energies in a rectangular plate modeling suspension bridges. Nonlinear Anal. TMA 106, 18–34 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arioli G., Gazzola F.: A new mathematical explanation of what triggered the catastrophic torsional mode of the Tacoma Narrows Bridge collapse. Appl. Math. Model. 39, 901–912 (2015)

    Article  MathSciNet  Google Scholar 

  4. Bartoli G., Spinelli P.: The stochastic differential calculus for the determination of structural response under wind. J. Wind Eng. Ind. Aerodyn. 48, 175–188 (1993)

    Article  Google Scholar 

  5. Bellazzini J., Benci V., Bonanno C., Micheletti A.M.: Solitons for the nonlinear Klein–Gordon equation. Adv. Nonlinear Stud. 10, 481–500 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bellazzini J., Benci V., Bonanno C., Sinibaldi E.: Hylomorphic solitons in the nonlinear Klein–Gordon equation. Dyn. Partial Differ. Equ. 6, 311–336 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benci V.: Hylomorphic solitons. Milan J. Math. 77, 271–332 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Benci V., Fortunato D.: Solitary waves in the nonlinear wave equation and in gauge theories. J. Fixed Point Theory Appl. 1, 61–86 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Benci V., Fortunato D.: A minimization method and applications to the study of solitons. Nonlinear Anal. TMA 75, 4398–4421 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Benci V., Fortunato D.: Existence of solitons in the nonlinear beam equation. J. Fixed Point Theory Appl. 11, 261–278 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Benci V., Fortunato D.: Hylomorphic solitons and charged Q-balls: existence and stability. Chaos Solitons Fract. 58, 1–15 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Benci, V., Fortunato, D.: Variational Methods in Nonlinear Field Equations, Springer Monographs in Mathematics. Springer, Heidelberg, 2014. ISBN: 978-3-319-06913-5. doi:10.1007/978-3-319-06914-2

  13. Berchio E., Ferrero A., Gazzola F.: Structural instability of nonlinear plates modelling suspension bridges: mathematical answers to some long-standing questions. Nonlin. Anal. Real World Appl. 28, 91–125 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Berchio E., Gazzola F.: A qualitative explanation of the origin of torsional instability in suspension bridges. Nonlinear Anal. TMA 121, 54–72 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Brownjohn J.M.W.: Observations on non-linear dynamic characteristics of suspension bridges. Earthq. Eng. Struct. Dyn. 23, 1351–1367 (1994)

    Article  Google Scholar 

  16. Doole S.H., Hogan S.J.: Non-linear dynamics of the extended Lazer–McKenna bridge oscillation model. Dyn. Stab. Syst. 15, 43–58 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ferrero, A., Gazzola, F., A partially hinged rectangular plate as a model for suspension bridges. Disc. Cont. Dynam. Syst. A 35, 5879–5908, 2015

  18. Gazzola F.: Nonlinearity in oscillating bridges. Electron. J. Differ. Equ. 211, 1–47 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Gazzola, F.: Mathematical Models for Suspension Bridges. MS&A Vol. 15. Springer, Berlin, 2015

  20. Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Prentice-Hall, Englewood Cliffs, 1963

  21. Holubová G., Matas A.: Initial-boundary value problem for nonlinear string-beam system. J. Math. Anal. Appl. 288, 784–802 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lacarbonara, W.: Nonlinear Structural Mechanics. Springer, Berlin, 2013

  23. Lazer A.C., McKenna P.J.: Large scale oscillating behaviour in loaded asymmetric systems. Ann. Inst. H. Poincaré, Analyse Nonlin. 4, 244–274 (1987)

    MATH  Google Scholar 

  24. Lazer A.C., McKenna P.J.: Large amplitude periodic oscillations in suspension bridge: some new connection with nonlinear analysis. SIAM Rev. 32, 537–578 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Luco J.L., Turmo J.: Effect of hanger flexibility on dynamic response of suspension bridges. J. Eng. Mech. 136, 1444–1459 (2010)

    Article  Google Scholar 

  26. Marchionna C., Panizzi S.: An instability result in the theory of suspension bridges. Nonlinear Anal. TMA 140, 12–28 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. McKenna P.J.: Torsional oscillations in suspension bridges revisited: fixing an old approximation. Am. Math. Mon. 106, 1–18 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. McKenna, P.J., Ó Tuama, C.: Large torsional oscillations in suspension bridges visited again: vertical forcing creates torsional response. Am. Math. Mon. 108, 738–745, 2001

  29. McKenna P.J., Walter W.: Nonlinear oscillations in a suspension bridge. Arch. Rational Mech. Anal. 98, 167–177 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. McKenna P.J., Walter W.: Travelling waves in a suspension bridge. SIAM J. Appl. Math. 50, 703–715 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  31. Melan, J.: Theory of arches and suspension bridges, Myron Clark Publ. Comp., London 1913 (German original: Handbuch der Ingenieurwissenschaften, Vol. 2, 1906)

  32. Moore K.S.: Large torsional oscillations in a suspension bridge: multiple periodic solutions to a nonlinear wave equation. SIAM J. Math. Anal 33, 1411–1429 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pittel B.G., Yakubovich V.A.: A mathematical analysis of the stability of suspension bridges based on the example of the Tacoma bridge (Russian). Vestnik Leningrad Univ. 24, 80–91 (1969)

    MathSciNet  MATH  Google Scholar 

  34. Scott, R.: In the Wake of Tacoma. Suspension Bridges and the Quest for Aerodynamic Stability. ASCE Press, 2001

  35. Tacoma Narrows Bridge collapse. http://www.youtube.com/watch?v=3mclp9QmCGs (1940, video)

  36. Volgograd Bridge oscillations. http://www.bbc.co.uk/news/10138398 (2010, video)

  37. Yakubovich, V.A., Starzhinskii, V.M.: Linear Differential Equations with Periodic Coefficients. Wiley, New York, 1975; (Russian original in Izdat. Nauka, Moscow, 1972

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Gazzola.

Additional information

Communicated by G. Dal Maso

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benci, V., Fortunato, D. & Gazzola, F. Existence of Torsional Solitons in a Beam Model of Suspension Bridge. Arch Rational Mech Anal 226, 559–585 (2017). https://doi.org/10.1007/s00205-017-1138-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1138-8

Navigation