Skip to main content
Log in

Zero Viscosity Limit for Analytic Solutions of the Primitive Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The aim of this paper is to prove that the solutions of the primitive equations converge, in the zero viscosity limit, to the solutions of the hydrostatic Euler equations. We construct the solution of the primitive equations through a matched asymptotic expansion involving the solution of the hydrostatic Euler equation and boundary layer correctors as the first order term, and an error that we show to be \({O(\sqrt{\nu})}\). The main assumption is spatial analyticity of the initial datum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asano K.: A note on the abstract Cauchy–Kowalewski theorem. Proc. Jpn. Acad. Ser. A Math. Sci. 64(4), 102–105 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bardos, C., Nguyen, T.: Remarks on the inviscid limit for the compressible flows. arXiv:1410.4952v1 (2014)

  3. Berselli L., Spirito S.: On the vanishing viscosity limit of 3D Navier–Stokes equations under slip boundary conditions in general domains. Commun. Math. Phys. 316(1), 171–198 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Brenier Y.: Homogeneous hydrostatic flows with convex velocity profiles. Nonlinearity 12(3), 495–512 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Brenier Y.: Remarks on the derivation of the hydrostatic Euler equations. Bull. Sci. Math. 127(7), 585–595 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caflisch, R., Sammartino, M.: Navier–Stokes equations on an exterior circular domain: construction of the solution and the zero viscosity limit. C. R. Acad. Sci. Paris Sér. I Math. 324(8), 861–866 (1997)

  7. Caflisch, R., Sammartino, M.: Existence and singularities for Prandtl and boundary layer equations. ZAMM Z. Angew. Math. Mech. 80, 733–744 (2000) (special issue on the occasion of the 125th anniversary of the birth of Ludwig Prandtl)

  8. Cannone M., Lombardo M., Sammartino M.: Existence and uniqueness for the Prandtl equations. C. R. Acad. Sci. Paris Sér. I Math. 332(3), 277–282 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Cannone M., Lombardo M.C., Sammartino M.: Well-posedness of Prandtl equations with non-compatible data. Nonlinearity 26(12), 3077–3100 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Cao, C., Ibrahim, S., Nakanishi, K., Titi, E.: Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics. Commun. Math. Phys. 337(2), 473–482 (2015)

  11. Cao, C., Titi, E.: Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics. Ann. Math. (2) 166(1), 245–267 (2007)

  12. Constantin P., Kukavica I., Vicol V.: On the inviscid limit of the Navier–Stokes equations. Proc. Am. Math. Soc. 143(7), 3075–3090 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Constantin P., Wu J.: Inviscid limit for vortex patches. Nonlinearity 8(5), 735–742 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Coti Zelati, M., Huang, A., Kukavica, I., Temam, R., Ziane, M.: The primitive equations of the atmosphere in presence of vapour saturation. Nonlinearity 28(3), 625–668 (2015)

  15. Weinan, E.: Boundary layer theory and the zero-viscosity limit of the Navier–Stokes equation. Acta Math. Sin. 16, 207–218 (2000)

  16. Weinan, E., Engquist, B.: Blowup of the solutions to the unsteady Prandtl’s equations. Commun. Pure Appl. Math. 50, 1287–1293 (1997)

  17. Gargano F., Sammartino M., Sciacca V.: Singularity formation for Prandtl’s equations. Phys. D 238(19), 1975–1991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gargano F., Sammartino M., Sciacca V., Cassel K.W.: Analysis of complex singularities in high-Reynolds-number Navier–Stokes solutions. J. Fluid Mech. 747, 381–421 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Glatt-Holtz N., Kukavica I., Vicol V., Ziane M.: Existence and regularity of invariant measures for the three dimensional stochastic primitive equations. J. Math. Phys. 55, 1–34 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Grenier, E.: On the derivation of homogeneous hydrostatic equations. M2AN Math. Model. Numer. Anal. 33(5), 965–970 (1999)

  21. Kato, T.: Nonstationary flows of viscous and ideal fluids in R 3. J. Funct. Anal. 9, 296–305 (1972)

  22. Kato, T.: Remarks on zero viscosity limit for nonstationary Navier–Stokes flows with boundary. Seminar on nonlinear partial differential equations (Berkeley, 1983). Mathematical Science Research Institute Publications, Vol. 2. Springer, New York, 85–98, 1984

  23. Kelliher J.: On Kato’s conditions for vanishing viscosity. Indiana Univ. Math. J. 56(4), 1711–1721 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kelliher J.: On the vanishing viscosity limit in a disk. Math. Ann. 343(3), 701–726 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Kukavica, I., Masmoudi, N., Vicol, V., Wong, T.: On the local well-posedness of the Prandtl and hydrostatic Euler equations with multiple monotonicity regions. SIAM J. Math. Anal. 46(6), 3865–3890 (2014)

  26. Kukavica I., Pei Y., Rusin W., Ziane M.: Primitive equations with continuous initial data. Nonlinearity 27(6), 1135–1155 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Kukavica I., Temam R., Vicol V., Ziane M.: Local existence and uniqueness for the hydrostatic Euler equations on a bounded domain. J. Differ. Equ. 250(3), 1719–1746 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Kukavica I., Vicol V.: On the local existence of analytic solutions to the Prandtl boundary layer equations. Commun. Math. Sci. 11(1), 269–292 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Kukavica I., Ziane M.: On the regularity of the primitive equations of the ocean. Nonlinearity 20(12), 2739–2753 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Kukavica I., Ziane M.: Uniform gradient bounds for the primitive equations of the ocean. Differ. Integral Equ. 21(9–10), 837–849 (2008)

    MathSciNet  MATH  Google Scholar 

  31. Lions J.L., Temam R., Wang S.: On the equations of the large-scale ocean. Nonlinearity 5(5), 1007–1053 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Lions, J.L., Temam, R., Wang, S.: Mathematical theory for the coupled atmosphere-ocean models. (CAO III). J. Math. Pures Appl. (9) 74(2), 105–163 (1995)

  33. Lions J.L., Temam R., Wang S.: A simple global model for the general circulation of the atmosphere. Commun. Pure Appl. Math. 50(8), 707–752 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lions, P.L.: Mathematical topics in fluid mechanics, Vol. 1. Oxford Lecture Series in Mathematics and its Applications, Vol. 3. Incompressible models, Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1996

  35. Lombardo, M., Cannone, M., Sammartino, M.: Well-posedness of the boundary layer equations. SIAM J. Math. Anal. 35(4), 987–1004 (electronic) (2003)

  36. Lombardo M., Sammartino M.: Zero viscosity limit of the Oseen equations in a channel. SIAM J. Math. Anal. 33(2), 390–410 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lopes Filho, M., Mazzucato, A., Nussenzveig Lopes, H.: Vanishing viscosity limit for incompressible flow inside a rotating circle. Phys. D 237(10–12), 1324–1333 (2008)

  38. Maekawa, Y.: On the inviscid limit problem of the vorticity equations for viscous incompressible flows in the half-plane. Comm. Pure Appl. Math. 67(7), 1045–1128 (2014)

  39. Masmoudi, N.: The Euler limit of the Navier–Stokes equations, and rotating fluids with boundary. Arch. Ration. Mech. Anal. 142(4), 375–394 (1998)

  40. Masmoudi N., Wong T.: On the \({H^s}\) theory of hydrostatic Euler equations. Arch. Ration. Mech. Anal. 204(1), 231–271 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Masmoudi N., Wong T.K.: Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods. Commun. Pure Appl. Math. 68(10), 1683–1741 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mazzucato A., Taylor M.: Vanishing viscosity plane parallel channel flow and related singular perturbation problems. Anal. PDE 1(1), 35–93 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. McGrath F.: Nonstationary plane flow of viscous and ideal fluids. Arch. Ration. Mech. Anal. 27, 329–348 (1967)

    MathSciNet  MATH  Google Scholar 

  44. Petcu, M., Temam, R., Ziane, M.: Some mathematical problems in geophysical fluid dynamics. Handbook of numerical analysis, Vol. XIV. Special volume: Computational methods for the atmosphere and the oceans. Handbook of Numerical Analysis, Vol. 14. Elsevier/North-Holland, Amsterdam, 577–750, 2009

  45. Petcu M., Wirosoetisno D.: Sobolev and Gevrey regularity results for the primitive equations in three space dimensions. Appl. Anal. 84(8), 769–788 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  46. Renardy M.: Ill-posedness of the hydrostatic Euler and Navier–Stokes equations. Arch. Ration. Mech. Anal. 194(3), 877–886 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Safonov M.: The abstract Cauchy–Kovalevskaya theorem in a weighted Banach space. Commun. Pure Appl. Math. 48(6), 629–637 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  48. Sammartino, M., Caflisch, R.: Zero viscosity limit for analytic solutions, of the Navier–Stokes equation on a half-space. I. Existence for Euler and Prandtl equations. Commun. Math. Phys. 192(2), 433–461 (1998)

  49. Sammartino M., Caflisch R.: Zero viscosity limit for analytic solutions of the Navier–Stokes equation on a half-space. II. Construction of the Navier–Stokes solution. Commun. Math. Phys. 192(2), 463–491 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Temam, R., Wang, X.: On the behavior of the solutions of the Navier–Stokes equations at vanishing viscosity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25(3–4), 807–828 (1998) (1997) (dedicated to Ennio De Giorgi)

  51. Temam, R., Ziane, M.: Some mathematical problems in geophysical fluid dynamics. Handbook of Mathematical Fluid Dynamics, Vol. III. North-Holland, Amsterdam, 535–657, 2004

  52. Wang, X.: A Kato type theorem on zero viscosity limit of Navier–Stokes flows. Indiana Univ. Math. J. 50(special issue), 223–241 (2001) (dedicated to professors Ciprian Foias and Roger Temam, Bloomington, 2000)

  53. Ziane, M.: Regularity results for Stokes type systems related to climatology. Appl. Math. Lett. 8(1), 53–58 (1995). doi:10.1016/0893-9659(94)00110-X

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Kukavica.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukavica, I., Lombardo, M.C. & Sammartino, M. Zero Viscosity Limit for Analytic Solutions of the Primitive Equations. Arch Rational Mech Anal 222, 15–45 (2016). https://doi.org/10.1007/s00205-016-0995-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-016-0995-x

Keywords

Navigation