Skip to main content
Log in

On the Regularity Set and Angular Integrability for the Navier–Stokes Equation

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We investigate the size of the regular set for suitable weak solutions of the Navier–Stokes equation, in the sense of Caffarelli–Kohn–Nirenberg (Commun Pure Appl Math 35:771–831, 1982). We consider initial data in weighted Lebesgue spaces with mixed radial-angular integrability, and we prove that the regular set increases if the data have higher angular integrability, invading the whole half space \({\{t > 0\}}\) in an appropriate limit. In particular, we obtain that if the \({L^{2}}\) norm with weight \({|x|^{-\frac12}}\) of the data tends to 0, the regular set invades \({\{t > 0\}}\); this result improves Theorem D of Caffarelli et al. (Commun Pure Appl Math 35:771–831, 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caffarelli L. A., Kohn R., Nirenberg L.: First order interpolation inequalities with weights. Compositio Math. 53(3), 259–275 (1984)

    MATH  MathSciNet  Google Scholar 

  2. Caffarelli L.A., Kohn R., Nirenberg L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 35, 771–831 (1982)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Calderón C.P.: Existence of weak solutions for the Navier–Stokes equations with initial data in \({L^{p}}\). Trans. Am. Math. Soc. 318(1), 179–200 (1990)

    MATH  MathSciNet  Google Scholar 

  4. Cannone M.: A generalization of a theorem by Kato on Navier–Stokes equations. Rev. Mat. Iberoam. 13, 515–541 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cho Y., Ozawa T.: Sobolev inequalities with symmetry. Commun. Contemp. Math. 11(3), 355–365 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Córdoba A.: Singular integrals and maximal functions: the disk multiplier revisited. Adv. Math. 290, 208–235 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  7. Córdoba A., Fefferman C.: A weighted norm inequality for singular integrals. Studia Math. 57(1), 97–101 (1976)

    MATH  MathSciNet  Google Scholar 

  8. D’Ancona P., Cacciafesta F.: Endpoint estimates and global existence for the nonlinear Dirac equation with potential. J. Differ. Equ. 254(5), 2233–2260 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. D’Ancona P., Lucà R.: Stein–Weiss and Caffarelli–Kohn–Nirenberg inequalities with higher angular integrability. J. Math. Anal. Appl. 388(2), 1061–1079 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. De Nápoli P.L., Drelichman I., Durán R.G.: Improved Caffarelli–Kohn–Nirenberg and trace inequalities for radial functions. Commun. Pure Appl. Anal. 11(5), 1629–1642 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Escauriaza L., Seregin G., Šverák V.: Backward uniqueness for parabolic equations. Arch. Ration. Mech. Anal. 169, 147–157 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fabes E., Jones B., Riviere N.: The initial value problem for the Navier–Stokes equation with data in \({L^{p}}\). Arch. Ration. Mech. Anal. 45, 222–240 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fang D., Wang C.: Weighted Strichartz estimates with angular regularity and their applications. Forum Math. 23, 181–205 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gallagher I., Iftimie D., Planchon F.: Asymptotics and stability for global solutions to the Navier–Stokes equations. Ann. Inst. Four. 53 5, 1387–1424 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Giga Y.: Solutions for semilinear parabolic equations in \({L^{p}}\) and regularity of weak solutions of the NavierStokes system. J. Differ. Equ. 62, 186–212 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Giga Y., Miyakawa T.: Navier–Stokes flow in \({\mathbb{R}^{3}}\) with mesures as initial vorticity and Morrey Spaces. Commun. Partial Differ. Equ., 14, 577–618 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hopf E.: Uber die Anfanqswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4, 213–231 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kato T.: Strong \({L^{p}}\)-solutions of the Navier–Stokes equation in \({\mathbb{R}^{n}}\), with applications to weak solutions. Math. Z. 187, 471–480 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  19. Koch H., Tataru D.: Well-posedness for the Navier–Stokes equations. Adv. Math. 157(1), 22–35 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lemarié-Rieusset P.G.: Recent Developments in the Navier–Stokes Problem. Research Notes in Mathematics Series, vol. 431. Chapman and Hall/CRC, Boca Raton (2002)

    MATH  Google Scholar 

  21. Leray J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 39, 193–248 (1934)

    Article  MathSciNet  Google Scholar 

  22. Lucà R.: Regularity criteria with angular integrability for the Navier–Stokes equation. Nonlinear Anal. 105, 24–40 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  23. Machihara S., Nakamura M., Nakanishi K., Ozawa T.: Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation. J. Funct. Anal. 219(1), 1–20 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Planchon F.: Global strong solutions in Sobolev or Lebesgue spces to the incompressible Navier–Stokes equations in \({\mathbb{R}^{3}}\). Ann. Inst. Henry Poincare Anal. Non Lineaire 13, 319–336 (1996)

    MATH  MathSciNet  Google Scholar 

  25. Prodi G.: Un teorema di unicità per le equazioni di Navier–Stokes. Ann. Mat. Pura Appl. 48(4), 173–182 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  26. Ozawa T., Rogers K.M.: Sharp Morawetz estimates. J. Anal. Math. 121, 163–175 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  27. Scheffer V.: Hausdroff measure and the Navier–Stokes equations. Commun. Math. Phys. 55(2), 97–112 (1977)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Serrin J.: On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 9, 187–195 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  29. Serrin, J.: The initial value problem for the Navier- Stokes equations. In: Nonlinear Problems (Proc. Sympos., Madison, Wis.), pp. 68–69. University of Wisconsin Press, Madison, 1963

  30. Sohr H.: Zur Regularitätstheorie der instationaren Gleichungen von Navier–Stokes. Math. Z. 184, 339–375 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  31. Stein E.M.: Note on singular integrals. Proc. Am. Math. Soc. 8, 250–254 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  32. Struwe M.: On partial regularity results for the NavierStokes equations. Commun. Pure Appl. Math. 41, 437–458 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  33. Taylor M.E.: Analysis on Morrey spaces and applications to Navier–Stokes and other evolution equations. Commun. Partial Differ. Equ. 17(9-10), 1407–1456 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  34. Sterbenz, J.: Angular regularity and Strichartz estimates for the wave equation. Int. Math. Res. Not. (4), 187–231 (2005) (with an appendix by Igor Rodnianski)

  35. Témam R.: Navier–Stokes Equations, Theory and Numerical Analysis. North-Holland Amsterdam, New York (1977)

    MATH  Google Scholar 

  36. von Wahl, W.: Regularity of weak solutions of the NavierStokes equations. In: Proceedings of the 1983 Summer Institute on Nonlinear Functional Analysis and Applications, Proceedings of Symposia in Pure Mathematics, vol. 45, pp. 497–503. American Mathematical Society, Providence, 1989

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Lucà.

Additional information

Communicated by V. Šverák

The authors are partially supported by the Italian Project FIRB 2012 “Dispersive dynamics: Fourier Analysis and Variational Methods”. Renato Lucà is supported by the ERC Grant 277778 and MINECO Grant SEV-2011-0087 (Spain).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Ancona, P., Lucà, R. On the Regularity Set and Angular Integrability for the Navier–Stokes Equation. Arch Rational Mech Anal 221, 1255–1284 (2016). https://doi.org/10.1007/s00205-016-0982-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-016-0982-2

Keywords

Navigation