Skip to main content
Log in

The Blow Up Method for Brakke Flows: Networks Near Triple Junctions

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We introduce a parabolic blow-up method to study the asymptotic behavior of a Brakke flow of planar networks (that is a 1-dimensional Brakke flow in a two dimensional region) weakly close in a space-time region to a static multiplicity 1 triple junction J. We show that such a network flow is regular in a smaller space-time region, in the sense that it consists of three curves coming smoothly together at a single point at 120\({^{\circ}}\) angles, staying smoothly close to J and moving smoothly. Using this result and White’s stratification theorem, we deduce that whenever a Brakke flow of networks in a space-time region \({{\mathcal {R}}}\) has no static tangent flow with density \({{\geqq}2}\), there exists a closed subset \({{\Sigma \subset {\mathcal {R}}}}\) of parabolic Hausdorff dimension at most 1 such that the flow is classical in \({{\mathcal {R}}\backslash\Sigma}\), that is near every point in \({{\mathcal {R}}\backslash\Sigma}\), the flow, if non-empty, consists of either an embedded curve moving smoothly or three embedded curves meeting smoothly at a single point at 120\({^{\circ}}\) angles and moving smoothly. In particular, such a flow is classical at all times except for a closed set of times of ordinary Hausdorff dimension at most \({\frac{1}{2}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allard W.K.: On the first variation of a varifold. Ann. Math. (2) 95, 417–491 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  2. Allard W.K., Almgren F.J.: On the radial behavior of minimal surfaces and the uniqueness of their tangent cones. Ann. Math. 113, 215–265 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brakke K.: The Motion of a Surface by its Mean Curvature. Mathematical Notes, vol. 20. Princeton University Press, Princeton (1978)

    MATH  Google Scholar 

  4. Bronsard L., Reitich F.: On three-phase boundary motion and the singular limit of a vector-valued Ginzburg–Landau equation. Arch. Ration. Mech. Anal. 124(4), 355–379 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Colding, T.H., Ilmanen, T., Minicozzi II, W.P.: Rigidity of generic singularities of mean curvature flow. Publ. Math. Inst. Hautes Études Sci. 121, 363–382 (2015)

  6. Colding, T.H., Minicozzi II, W.P.: Uniqueness of blowups and Lojasiewicz inequalities. Ann. Math. (2) 182(1), 221–285 (2015)

  7. Colding, T.H., Minicozzi II, W.P.: The singular set of mean curvature flow with generic singularities. arXiv:1405.5187

  8. Ecker K.: On regularity for mean curvature flow of hypersurfaces. Calc. Var. PDE 3(1), 107–126 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ecker, K.: Regularity theory for mean curvature flow. In: Progress in Nonlinear Differential Equations and Their Applications, vol. 57. Birkhäuser Boston, Inc., Boston, 2004

  10. Federer H.: The singular sets of area minimizing rectifiable currents with codimension one and of area minimizing flat chains over a finite coefficient group. Trans. Am. Math. Soc. 121, 160–186 (1966)

    Article  Google Scholar 

  11. Garcke H., Kohsaka Y., Ševčovič D.: Nonlinear stability of stationary solutions for curvature flow with triple function. Hokkaido Math. J. 38(4), 721–769 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gurtin M.E.: Thermomechanics of Evolving Phase Boundaries in the Plane. Oxford Science Publication, New York (1993)

    MATH  Google Scholar 

  13. Huisken G.: Asymptotic behavior for singularities of the mean curvature flow. J. Differ. Geom. 31(1), 285–299 (1990)

    MATH  MathSciNet  Google Scholar 

  14. Ikota R., Yanagida E.: Stability of stationary interfaces of binary-tree type. Calc. Var. PDE 22(4), 375–389 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ilmanen, T.: Elliptic regularization and partial regularity for motion by mean curvature. Mem. Am. Math. Soc. 108(520), x+90 (1994)

  16. Ilmanen, T.: Singularities of mean curvature flow of surfaces (1995). http://www.math.ethz.ch/~ilmanen/papers/sing.ps

  17. Ilmanen, T., Neves, A., Schulze, F.: On the short-time existence of network flows. arXiv:1407.4756

  18. Kasai K., Tonegawa Y.: A general regularity theory for weak mean curvature flow. Cal. Var. PDE 50(1), 1–68 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kinderlehrer D., Liu C.: Evolution of grain boundaries. Math. Models Methods Appl. Sci. 11(4), 713–729 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kinderlehrer D., Nirenberg L., Spruck J.: Regularity in elliptic free boundary problems. J. Anal. Math. 34(1), 86–119 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  21. Krummel, B., Wickramasekera, N.: Fine properties of branch point singularities: two-valued harmonic functions. arXiv:1311.0923

  22. Krummel, B., Wickramasekera, N.: Fine properties of branch point singularities: two-valued \({C^{1, \mu}}\) solutions to the minimal surface system (preprint)

  23. Ladyženskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and quasilinear equations of parabolic type (Translated from the Russian by S. Smith). Translations of Mathematical Monographs, vol. 23. American Mathematical Society, Providence, RI, pp. xi+648 (1968)

  24. Magni, A., Mantegazza, C., Novaga, M.: Motion by curvature of planar networks II. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (to appear)

  25. Mantegazza C., Novaga M., Tortorelli V.M.: Motion by curvature of planar networks. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 3(2), 235–324 (2004)

    MATH  MathSciNet  Google Scholar 

  26. Schulze, F.: Uniqueness of compact tangent flows in mean curvature flow. J. Reine Angew. Math. 690, 163–172 (2014)

  27. Simon, L.: Lectures on geometric measure theory. In: Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3. Australian National University, Canberra, pp. vii+272 (1983)

  28. Simon L.: Asymptotics for a class of evolution equations, with applications to geometric problems. Ann. Math. 118(3), 525–571 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  29. Simon L.: Cylindrical tangent cones and the singular set of minimal submanifolds. J. Differ. Geom. 38(3), 585–652 (1993)

    MATH  MathSciNet  Google Scholar 

  30. Simon, L.: Rectifiability of the singular sets of multiplicity 1 minimal surfaces and energy minimizing maps. Surv. Differ. Geom. II, 246–305 (1995)

  31. Solonnikov, V.A.: Boundary Value Problems of Mathematical Physics, vol. VIII. American Mathematical Society, Providence (1975)

  32. Taylor J.E.: The structure of singularities in soap bubbles and soap-film-like minimal surfaces. Ann. Math. (2) 103(3), 489–539 (1976)

    Article  MATH  Google Scholar 

  33. Tonegawa Y.: A second derivative Hölder estimate for weak mean curvature flow. Adv. Cal. Var. 7(1), 91–138 (2014)

    MATH  MathSciNet  Google Scholar 

  34. White B.: Regularity of the singular sets in immiscible fluid interfaces and solutions to other Plateau-type problems. Proc. Centre Math. Anal. Aust. Nat. Univ. Canberra 10, 244–249 (1985)

    MathSciNet  Google Scholar 

  35. White B.: Stratification of minimal surfaces, mean curvature flows, and harmonic maps. J. Reine Angew. Math. 488, 1–35 (1997)

    MATH  MathSciNet  Google Scholar 

  36. White B.: The size of the singular set in mean curvature flow of mean-convex surfaces. J. Am. Math. Soc. 13(3), 665–695 (2000)

    Article  MATH  Google Scholar 

  37. White B.: The nature of singularities in mean curvature flow of mean-convex surfaces. J. Am. Math. Soc. 16(1), 123–138 (2003)

    Article  MATH  Google Scholar 

  38. White B.: A local regularity theorem for classical mean curvature flows. Ann. Math. (2) 161(3), 1487–1519 (2005)

    Article  MATH  Google Scholar 

  39. White B.: Topological change in mean convex mean curvature flow. Invent. Math. 191(3), 501–525 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. Wickramasekera N.: A general regularity theory for stable codimension 1 integral varifolds. Ann. Math. (2) 179(3), 843–1007 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  41. Wickramasekera, N.: A stratification theorem for stable codimension 1 rectifiable currents near points of density <3 (in preparation)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Tonegawa.

Additional information

Communicated by D. Kinderlehrer

Y. Tonegawa is partially supported by JSPS Grant-in-aid for scientific research (A) #25247008, (S) #21224001 and challenging exploratory research #23654057.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tonegawa, Y., Wickramasekera, N. The Blow Up Method for Brakke Flows: Networks Near Triple Junctions. Arch Rational Mech Anal 221, 1161–1222 (2016). https://doi.org/10.1007/s00205-016-0981-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-016-0981-3

Keywords

Navigation