Skip to main content
Log in

Analyticity of Homogenized Coefficients Under Bernoulli Perturbations and the Clausius–Mossotti Formulas

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This paper is concerned with the behavior of the homogenized coefficients associated with some random stationary ergodic medium under a Bernoulli perturbation. Introducing a new family of energy estimates that combine probability and physical spaces, we prove the analyticity of the perturbed homogenized coefficients with respect to the Bernoulli parameter. Our approach holds under the minimal assumptions of stationarity and ergodicity, both in the scalar and vector cases, and gives analytical formulas for each derivative that essentially coincide with the so-called cluster expansion used by physicists. In particular, the first term yields the celebrated (electric and elastic) Clausius–Mossotti formulas for isotropic spherical random inclusions in an isotropic reference medium. This work constitutes the first general proof of these formulas in the case of random inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almog Y.: Averaging of dilute random media: a rigorous proof of the Clausius–Mossotti formula. Arch. Ration. Mech. Anal. 207(3), 785–812 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Almog Y.: The Clausius–Mossotti formula in a dilute random medium with fixed volume fraction. Multiscale Model. Simul. 12(4), 1777–1799 (2014)

    Article  MathSciNet  Google Scholar 

  3. Anantharaman, A.: Mathematical Analysis of Some Models in Electronic Structure Calculations and Homogenization. Ph.D. thesis, Université de Paris-Est, 2010. HAL:tel-00558618v1

  4. Anantharaman A., Le Bris C.: A numerical approach related to defect-type theories for some weakly random problems in homogenization. Multiscale Model. Simul. 9(2), 513–544 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Anantharaman A., Le Bris C.: Elements of mathematical foundations for numerical approaches for weakly random homogenization problems. Commun. Comput. Phys. 11(4), 1103–1143 (2012)

    MathSciNet  Google Scholar 

  6. Berdichevskiĭ, V.L.: Variatsionnye printsipy mekhaniki sploshnoi sredy (Variational Principles in Continuum Mechanics). Nauka, Moscow, 1983

  7. Chatterjee S.: A new method of normal approximation. Ann. Probab. 36(4), 1584–1610 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cohen A., Devore R., Schwab C.: Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE’s. Anal. Appl. (Singap.) 9(1), 11–47 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Duerinckx, M.: Ph.D. thesis, Université Libre de Bruxelles and Université Pierre et Marie Curie (in preparation)

  10. Eshelby J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. Ser. A. 241, 376–396 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Gloria, A., Habibi, Z.: Reduction in the resonance error in numerical homogenization II: correctors and extrapolation. Found. Comput. Math. (in press). doi:10.1007/s10208-015-9246-z

  12. Gloria, A., Marahrens, D.: Annealed estimates on the Green functions and uncertainty quantification. Annales de l’Institut Henri Poincaré. Analyse Non Linéaire (in press). doi:10.1016/j.anihpc.2015.04.001

  13. Gloria A., Neukamm S., Otto F.: Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics. Invent. Math. 199(2), 455–515 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Gloria A., Otto F.: An optimal variance estimate in stochastic homogenization of discrete elliptic equations. Ann. Probab. 39(3), 779–856 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gloria A., Otto F.: An optimal error estimate in stochastic homogenization of discrete elliptic equations. Ann. Appl. Probab. 22(1), 1–28 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gloria, A., Otto, F.: Quantitative results on the corrector equation in stochastic homogenization. JEMS J. Eur. Math. Soc. (in press)

  17. Gloria A., Penrose M.D.: Random parking, Euclidean functionals, and rubber elasticity. Commun. Math. Phys. 321(1), 1–31 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Jeffrey D.J.: Conduction through a random suspension of spheres. Proc. R. Soc. Lond. Ser. A. 335, 355–367 (1973)

    Article  ADS  Google Scholar 

  19. Jikov, V.V., Kozlov, S.M., Olenĭk, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin, 1994. Translated from Russian by G. A. Iosif′yan

  20. Lachièze-Rey, P., Peccati, G.: New Kolmogorov bounds for functionals of binomial point processes (2015, preprint)

  21. Lamacz, A., Neukamm, S., Otto, F.: Moment bounds for the corrector in stochastic homogenization of a percolation model. Electron J Probab (2015), (accepted). arXiv:1406.5723

  22. Legoll, F., Minvielle, W.: A control variate approach based on a defect-type theory for variance reduction in stochastic homogenization SIAM Multiscale Modeling Simul. 13(2), 519–550 (2015)

  23. Marahrens, D., Otto, F.: Annealed estimates on the Green’s function. Probab. Theory Relat. Fields (in press). doi:10.1007/s00440-014-0598-0

  24. Maxwell, J.C.: A Treatise on Electricity and Magnetism, Vol. 1. Clarendon Press, Oxford, 1881

  25. Mourrat J.-C.: First-order expansion of homogenized coefficients under Bernoulli perturbations. J. Math. Pures Appl. 103, 68–101 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mura, T.: Micromechanics of Defects in Solids. Mechanics of Elastic and Inelastic Solids. Martinus Nijhoff, Dordrecht, 1991. Second revised edition

  27. Papanicolaou, G.C., Varadhan, S.R.S.: Boundary value problems with rapidly oscillating random coefficients. Random Fields, Vol. I, II (Esztergom, 1979). Colloquia of Mathematical Society János Bolyai, Vol. 27. North-Holland, Amsterdam, 835–873, 1981

  28. Penrose M.D.: Random parking, sequential adsorption, and the jamming limit. Commun. Math. Phys. 218(1), 153–176 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Rayleigh J.W.S.: On the influence of obstacles arranged in rectangular order upon the properties of a medium. Philos. Mag. 34, 481–502 (1892)

    Article  MATH  Google Scholar 

  30. Ross D.K.: The potential due to two point charges each at the centre of a spherical cavity and embedded in a dielectric medium. Aust. J. Phys. 21, 817–822 (1968)

    Article  ADS  Google Scholar 

  31. Stratton J.A.: Electromagnetic Theory. McGraw-Hill, New York (1941)

    MATH  Google Scholar 

  32. Torquato, S.: Random heterogeneous materials: microstructure and macroscopic properties. Interdisciplinary Applied Mathematics, Vol. 16. Springer, New York, 2002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitia Duerinckx.

Additional information

Communicated by C. Le Bris

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duerinckx, M., Gloria, A. Analyticity of Homogenized Coefficients Under Bernoulli Perturbations and the Clausius–Mossotti Formulas. Arch Rational Mech Anal 220, 297–361 (2016). https://doi.org/10.1007/s00205-015-0933-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-015-0933-3

Keywords

Navigation