Skip to main content
Log in

Stability of the Self-similar Dynamics of a Vortex Filament

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper we continue our investigation of self-similar solutions of the vortex filament equation, also known as the binormal flow or the localized induction equation. Our main result is the stability of the self-similar dynamics of small perturbations of a given self-similar solution. The proof relies on finding precise asymptotics in space and time for the tangent and the normal vectors of the perturbations. A main ingredient in the proof is the control of the evolution of weighted norms for a cubic one-dimensional Schrödinger equation, connected to the binormal flow by Hasimoto’s transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseenko S.V., Kuibin P.A., Okulov V.L.: Theory of Concentrated Vortices. An Introduction. Springer, Berlin (2007)

    MATH  Google Scholar 

  2. Arms, R.J., Hama, F.R.: Localized-induction concept on a curved vortex and motion of an elliptic vortex ring. Phys. Fluids 553 (1965)

  3. Banica V., Vega L.: On the Dirac delta as initial condition for nonlinear Schrödinger equations. Ann. I. H. Poincaré, An. Non. Lin. 25, 697–711 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Banica V., Vega L.: On the stability of a singular vortex dynamics. Commun. Math. Phys. 286, 593–627 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Banica V., Vega L.: Scattering for 1D cubic NLS and singular vortex dynamics. J. Eur. Math. Soc. 14, 209–253 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Batchelor G.K.: An Introduction to the Fluid Dynamics. Cambridge University Press, Cambridge (1967)

    Google Scholar 

  7. Buttke T.F.: A numerical study of superfluid turbulence in the self-induction approximation. J. Comput. Phys. 76, 301–326 (1988)

    Article  ADS  MATH  Google Scholar 

  8. Carles R.: Geometric optics and long range scattering for one-dimensional nonlinear Schrödinger equations. Commun. Math. Phys. 220(1), 41–67 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Da Rios L.S.: On the motion of an unbounded fluid with a vortex filament of any shape. Rend. Circ. Mat. Palermo 22, 117 (1906)

    Article  MATH  Google Scholar 

  10. de la Hoz F.: Self-similar solutions for the 1-D Schrödinger map on the Hyperbolic plane. Math. Z. 257, 61–80 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. de la Hoz F., García-Cervera C.J., Vega L.: A numerical study of the self-similar solutions of the Schrödinger map. SIAM J. Appl. Math. 70, 1047–1077 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dereziński J., Gérard C.: Scattering theory of classical and quantum N-particle systems. Texts and Monographs in Physics. Springer, Berlin (1997)

    Book  Google Scholar 

  13. Dyke M.V.: An Album of Fluid Motion. Parabolic Press, Stanford (1982)

    Google Scholar 

  14. Fukumoto Y., Miyazaki T.: Three dimensional distorsions at a vortex filament with axial velocity. J. Fluid Mech. 222 396–416 (1991)

    Article  MathSciNet  Google Scholar 

  15. Germain, P., Masmoudi, N., Shatah, J.: Global solutions for 2D quadratic Schroedinger equations. J. Math. Pures Appl. (2013, to appear)

  16. Grinevich, P.G., Schmidt, M.U.: Closed curves in \({{\mathbb{R}}^3}\) : a characterization in terms of curvature and torsion, the Hasimoto map and periodic solutions of the Filament Equation, arXiv:dg-ga/9703020v1

  17. Gustafson S., Nakanishi K., Tsai T.-P.: Scattering theory for the Gross–Pitaevskii equation in three dimensions. Commun. Contemp. Math. 11, 657–707 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gutiérrez S., Rivas J., Vega L.: Formation of singularities and self-similar vortex motion under the localized induction approximation. Commun. Partial Differ. Equ. 28, 927–968 (2003)

    Article  MATH  Google Scholar 

  19. Hasimoto H.: A soliton in a vortex filament. J. Fluid Mech. 51, 477–485 (1972)

    Article  ADS  MATH  Google Scholar 

  20. Hayashi N., Naumkin P.: Domain and range of the modified wave operator for Schrödinger equations with critical nonlinearity. Commun. Math. Phys. 267, 477–492 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Jerrard, R.L., Smets, D.: On Schrödinger maps from T 1 to S 2, arXiv:1105.2736

  22. Jerrard, R.L., Smets, D.: On the motion of a curve by its binormal curvature arXiv:1109.5483

  23. Koiso N.: Vortex filament equation and semilinear Schrödinger equation, . Nonlinear Waves, Hokkaido University Technical Report Series in Mathematics. 43, 221–226 (1996)

    Google Scholar 

  24. Majda, A.J., Bertozzi, A.L.: Vorticity and incompressible flow. Cambridge Texts in Applied Mathematics, 2002.

  25. Moriyama K., Tonegawa S., Tsutsumi Y.: Wave operators for the nonlinear Schrödinger equation with a nonlinearity of low degree in one or two space dimensions. Commun. Contemp. Math. 5, 983–996 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nishiyama T., Tani A.: Solvability of the Localized Induction Equation for Vortex Motion. Commun. Math. Phys. 162, 433–445 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Nishiyama T., Tani A.: Solvability of Equations for Motion of a Vortex Filament with or without Axial Flow. Publ RIMS, Kyoto Univ. 33, 509–526 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. ONERA, Aérodynamique: décollement 3D et tourbillons. Tourbillons sur une aile delta en incidence (2004). http://www.onera.fr/conferences/decollement3d/17-tourbillonsailedeltaincidence.html

  29. Ozawa T.: Long range scattering for nonlinear Schrödinger equations in one space dimension. Commun. Math. Phys. 139, 479–493 (1991)

    Article  ADS  MATH  Google Scholar 

  30. Ricca R.L.: The contributions of Da Rios and Levi–Civita to asymptotic potential theory and vortex filament dynamics. Fluid Dynam. Res. 18, 245–268 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Saffman P.G.: Vortex dynamics, Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press, New York (1992)

    Google Scholar 

  32. Shimomura A., Tonegawa S.: Long-range scattering for nonlinear Schrödinger equations in one and two space dimensions. J. Differ. Integral Equ. 17, 127–150 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Banica.

Additional information

Communicated by L. Saint-Raymond

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banica, V., Vega, L. Stability of the Self-similar Dynamics of a Vortex Filament. Arch Rational Mech Anal 210, 673–712 (2013). https://doi.org/10.1007/s00205-013-0660-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-013-0660-6

Keywords

Navigation