Skip to main content
Log in

Global Solutions of Nonlinear Wave Equations in Time Dependent Inhomogeneous Media

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider the problem of small data global existence for a class of semilinear wave equations with null condition on a Lorentzian background \({(\mathbb{R}^{3 + 1}, g)}\) with a time dependent metric g coinciding with the Minkowski metric outside the cylinder \({\{(t, x) || x | \leq R\}}\). We show that the small data global existence result can be reduced to two integrated local energy estimates and demonstrate that these estimates work in the particular case when g is merely C 1 close to the Minkowski metric. One of the novel aspects of this work is that it applies to equations on backgrounds which do not settle to any particular stationary metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alinhac, S.: An example of blowup at infinity for a quasilinear wave equation (Autour de l’analyse microlocale). Astérisque (284):1–91 (2003)

  2. Alinhac S.: Free decay of solutions to wave equations on a curved background. Bull. Soc. Math. France 133(3), 419–458 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Christodoulou D.: Global solutions of nonlinear hyperbolic equations for small initial data. Comm. Pure Appl. Math. 39(2), 267–282 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Christodoulou, D.,Klainerman, S.: The global nonlinear stability of the Minkowski space, vol. 41 of Princeton Mathematical Series. Princeton University Press, Princeton, 1993

  5. Dafermos, M.,Rodnianski, I.: A new physical-space approach to decay for the wave equation with applications to black hole spacetimes. 2009. arXiv:math.AP/0910.4957

  6. Dafermos M., Rodnianski I.: The redshift effect and radiation decay on black hole spacetimes. Comm. Pure Appl. Math. 62(7), 859–919 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gilbarg, D.,Trudinger, N.: Elliptic partial differential equations of second order. Springer, Berlin (reprint of the 1998 edition) 2001.

  8. Hörmander L.: Lectures on nonlinear hyperbolic differential equations. Springer, Berlin (1997)

    MATH  Google Scholar 

  9. John F.: Delayed singularity formation in solutions of nonlinear wave equations in higher dimensions. Comm. Pure Appl. Math. 29(6), 649–682 (1976)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. John F.: Blow-up for quasilinear wave equations in three space dimensions. Comm. Pure Appl. Math. 34(1), 29–51 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. John F.: Lower bounds for the life span of solutions of nonlinear wave equations in three dimensions. Comm. Pure Appl. Math. 36(1), 1–35 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. John F., Klainerman S.: Almost global existence to nonlinear wave equations in three space dimensions. Comm. Pure Appl. Math. 37(4), 443–455 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  13. Klainerman S.: Global existence for nonlinear wave equations. Comm. Pure Appl. Math. 33(1), 43–101 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  14. Klainerman S.: Long time behaviour of solutions to nonlinear wave equations. In: Proceedings of the international congress of mathematicians, vol. 1, 2 (PWN, Warsaw, 1983), pp. 1209–1215, 1984.

  15. Klainerman S.: Uniform decay estimates and the Lorentz invariance of the classical wave equation. Comm. Pure Appl. Math. 38(3), 321–332 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Klainerman, S.: The null condition and global existence to nonlinear wave equations. In: Nonlinear systems of partial differential equations in applied mathematics, Part 1 (1984), vol. 23 of lectures in applied mathematics, pp. 293–326. Am. Math. Soc., Providence, RI 1986

  17. Klainerman S., Ponce G.: Global, small amplitude solutions to nonlinear evolution equations. Comm. Pure Appl. Math. 36(1), 133–141 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Klainerman S., Sideris T.: On almost global existence for nonrelativistic wave equations in 3d. Comm. Pure Appl. Math. 49(3), 307–321 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lindblad H.: Global solutions of nonlinear wave equations. Comm. Pure Appl. Math. 45(9), 1063–1096 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lindblad H.: Global solutions of quasilinear wave equations. Am. J. Math. 130(1), 115–157 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lindblad H., Rodnianski I.: The global stability of Minkowski space-time in harmonic gauge. Ann. of Math. (2) 171(3), 1401–1477 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Metcalfe J., Nakamura M., Sogge C.D.: Global existence of solutions to multiple speed systems of quasilinear wave equations in exterior domains. Forum Math. 17(1), 133–168 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Metcalfe J.,Sogge C.: Long-time existence of quasilinear wave equations exterior to star-shaped obstacles via energy methods. SIAM J. Math. Anal. 38(1): 188–209 (electronic) (2006)

    Google Scholar 

  24. Metcalfe J., Sogge C.: Global existence of null-form wave equations in exterior domains. Math. Z. 256(3), 521–549 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Morawetz C.S.: Time decay for the nonlinear Klein-Gordon equations. Proc. Roy. Soc. Ser. A 306, 291–296 (1968)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Shatah J.: Global existence of small solutions to nonlinear evolution equations. J. Differ. Equ. 46(3), 409–425 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sideris, T.,Tu, S.-Y.: Global existence for systems of nonlinear wave equations in 3D with multiple speeds. SIAM J. Math. Anal. 33(2), 477–488 (electronic) (2001)

    Google Scholar 

  28. Sogge, C.: Global existence for nonlinear wave equations with multiple speeds. In: Harmonic analysis at Mount Holyoke (South Hadley, MA, 2001), vol. 320 of Contemp. Math., pp. 353–366. Am. Math. Soc., Providence, RI 2003

  29. Sogge C.D.: Lectures on non-linear wave equations, second edition. International Press, Boston (2008)

    Google Scholar 

  30. Sterbenz, J.: Angular regularity and Strichartz estimates for the wave equation. Int. Math. Res. Not. 4, 187–231 (2005) (With an appendix by Igor Rodnianski)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiwu Yang.

Additional information

Communicated by C. Dafermos

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, S. Global Solutions of Nonlinear Wave Equations in Time Dependent Inhomogeneous Media. Arch Rational Mech Anal 209, 683–728 (2013). https://doi.org/10.1007/s00205-013-0631-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-013-0631-y

Keywords

Navigation