Skip to main content
Log in

Microscopic Theory of Isothermal Elastodynamics

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This paper examines random perturbations of the anharmonic chain of coupled oscillators. The microscopic system has two conservation laws, and its hyperbolic scaling limit results in the quasi-linear wave equation (p-system) of isothermal (isentropic) elasticity. In the shock regime, the compensated compactness method is used. Lastly results from J. W. Shearer and D. Serre are applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball, J.M.: A version of the fundamental theorem for Young measures. In: Partial Differential Equations and Continuum Models of Phase Transitions (Eds. Rascle, M., Serre, D., Slemrod, M.). Lecture Notes in Physics, Vol. 344. Springer-Verlag, New York, 207–215, 1988

  2. Bernardin, C., Olla, S.: Non-equilibrium macroscopic dynamics of chains of anharmonic oscillators. IHP Preprint. http://www.ceremade.dauphine.fr/olla (2010)

  3. Chang C.C., Yau H.-T.: Fluctuations of one dimensional Ginzburg-Landau models in nonequilibrium. Commun. Math. Phys. 145, 209–245 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Chen G.-Q., Dafermos C.M.: The vanishing viscosity method in one-dimensional thermoelasticity. Trans. AMS 347, 531–541 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Grundlehren der Mathematishen Wissenschaften 325, 2nd edn. Springer-Verlag, Berlin, 2005

  6. Dalecky Yu.L., Fomin S.V.: Measures and Differential Equations in Infinite-Dimensional Spaces. Kluwer, Dordrecht (1991)

    Google Scholar 

  7. DiPerna R.: Measure-valued solutions to conservation laws. Arch. Rational Mech. Anal. 88, 223–270 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Deuschel J.-D., Stroock D.W.: Large Deviations. Academic Press, Boston (1989)

    MATH  Google Scholar 

  9. Dobrushin R.L., Pellegrinotti A., Suhov Yu.M., Triolo L.: One-dimensional harmonic lattice caricature of hydrodynamics. J. Stat. Phys. 38, 473–507 (1985)

    Article  Google Scholar 

  10. Ethier S.N., Kurtz T.G.: Markov Processes: Characterization and Convergence. Wiley, New York (1986)

    MATH  Google Scholar 

  11. Even, N., Olla, S.: Hydrodynamic limit for an Hamiltonian system with boundary conditions and conservative noise. Arch. Rational Mech. Anal. (2010, submitted)

  12. Fritz J., Maes Ch.: Derivation of hydrodynamic equations for Ginzburg-Landau models in an external field. J. Stat. Phys. 53, 79–106 (1988)

    Article  MathSciNet  Google Scholar 

  13. Fritz J.: On the diffusive nature of entropy flow in infinite systems: remarks to a paper by Guo, Papanicolau and Varadhan. Commun. Math. Phys. 133, 331–352 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Fritz J., Funaki T., Lebowitz J.L.: Stationary states of random Hamiltonian systems. Probab. Theory Relat. Fields 99, 211–236 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fritz, J.: An Introduction to the Theory of Hydrodynamic Limits. Lectures in Mathematical Sciences, Vol. 18. The University of Tokyo, Tokyo, 2001. ISSN 0919-8180

  16. Fritz J.: Entropy pairs and compensated compactness for weakly asymmetric systems. Adv. Stud. Pure Math. 39, 143–171 (2004)

    MathSciNet  Google Scholar 

  17. Fritz J., Tóth B.: Derivation of the Leroux system as the hydrodynamic limit of a two-component lattice gas. Commun. Math. Phys. 249, 1–27 (2004)

    Article  ADS  MATH  Google Scholar 

  18. Fritz J., Nagy K.: On uniqueness of the Euler limit of one-component lattice gas models. Latin Am. J. Probab. 1, 367–392 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Guo G.C., Papanicolau G., Varadhan S.R.S.: Nonlinear diffusion limit for a system with nearest neighbor interactions. Commun. Math. Phys. 8, 31–59 (1988)

    Article  ADS  MATH  Google Scholar 

  20. Kipnis, C., Landim, C.: Scaling Limit of Interacting Particle Systems. Grundlehren der Mathematishen Wissenschaften 320. Springer-Verlag, Berlin, 1999

  21. Landim C., Panizo G., Yau H.T.: Spectral gap and logarithmic Sobolev inequality for unbounded conservative spin systems. Ann. Inst. H. Poincaré Probab. Stat. 38, 739–777 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Lu Y.-G.: Conservation Laws and the Compensated Compactness Method. Chapman & Hall/CRC, Boca Raton (2003)

    MATH  Google Scholar 

  23. Murat F.: Compacité par compensation. Ann. Sci. Norm. Sup. Pisa 5, 489–507 (1978)

    MathSciNet  MATH  Google Scholar 

  24. Olla S., Varadhan S.R.S., Yau H.-T.: Hydrodynamical limit for a Hamiltonian system with weak noise. Commun. Math. Phys. 155, 523–560 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Perthame B., Tzavaras A.: Kinetic formulation for systems of two conservation laws and elastodynamics. Arch. Rational Mech. Anal. 155, 1–48 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Rezakhanlou F.: Hydrodynamic limit for attractive particle systems on Z d. Commun. Math. Phys. 140, 417–448 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Serre D.: La compacité par compensation pour les systemes hyperboliques non linéaires de deux éqations a une dimension d’space. J. Maths. Pures et Appl. 65, 423–468 (1986)

    MathSciNet  MATH  Google Scholar 

  28. Serre D.: Systems of Conservation Laws, Vols. 1–2. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  29. Serre, D., Shearer, J.W.: Convergence with Physical Viscosity for Nonlinear Elasticity. Preprint (1994)

  30. Shearer J.W.: Global existence and compactness in L p for the quasi-linear wave equation. Commun. Partial Differ. Equ. 19, 1829–1877 (1994)

    MathSciNet  MATH  Google Scholar 

  31. Spohn H.: Large Scale Dynamics of Interacting Particle Systems. Springer-Verlag, Berlin (1991)

    Google Scholar 

  32. Tartar, L.: Compensated compactness and applications to partial differential equations. In: Nonlinear Analysis and Mechanics. Heriot-Watt Symposium, Vol. IV. Pitman, London, 136–212, 1979

  33. Varadhan, S.R.S.: Nonlinear diffusion limit for a system with nearest neighbor interactions II. In: Asymptotic Problems in Probability Theory: Stochastic Models and Diffusion on Fractals (Eds. Elworthy, K.D., Ikeda, N.). Pitman Research Notes in Mathematics, Vol. 283. Wiley, New York, 75–128, 1994

  34. Yau H.-T.: Relative entropy and hydrodynamics of Ginzburg–Landau models. Lett. Math. Phys. 22, 63–80 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to József Fritz.

Additional information

Communicated by The Editors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fritz, J. Microscopic Theory of Isothermal Elastodynamics. Arch Rational Mech Anal 201, 209–249 (2011). https://doi.org/10.1007/s00205-010-0385-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-010-0385-8

Keywords

Navigation