Skip to main content

Advertisement

Log in

Convex Sobolev Inequalities Derived from Entropy Dissipation

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study families of convex Sobolev inequalities, which arise as entropy–dissipation relations for certain linear Fokker–Planck equations. Extending the ideas recently developed by the first two authors, a refinement of the Bakry–Émery method is established, which allows us to prove non-trivial inequalities even in situations where the classical Bakry–Émery criterion fails. The main application of our theory concerns the linearized fast diffusion equation in dimensions d ≧ 1, which admits a Poincaré, but no logarithmic Sobolev inequality. We calculate bounds on the constants in the interpolating convex Sobolev inequalities, and prove that these bounds are sharp on a specified range. In dimension d = 1, our estimates improve the corresponding results that can be obtained by the measure-theoretic techniques of Barthe and Roberto. As a by-product, we give a short and elementary alternative proof of the sharp spectral gap inequality first obtained by Denzler and McCann. In further applications of our method, we prove convex Sobolev inequalities for a mean field model for the redistribution of wealth in a simple market economy, and the Lasota model for blood cell production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold A., Dolbeault J.: Refined convex Sobolev inequalities. J. Funct. Anal. 225, 337–351 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arnold A., Markowich P., Toscani G., Unterreiter A.: On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker–Planck type equations. Comm. Part. Differ. Equ. 26, 43–100 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bakry, D., Émery, M.: Diffusions hypercontractives. Séminaire de probabilités, XIX, 1983/84, pp. 177–206. Lecture Notes in Math., vol. 1123. Springer, Berlin, 1985

  4. Barthe F.: Levels of concentration between exponential and Gaussian. Ann. Fac. Sci. Toulouse Math. 10(6), 393–404 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Barthe F., Cattiaux P., Roberto C.: Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry. Rev. Mat. Iberoam. 22, 993–1067 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Barthe F., Roberto C.: Sobolev inequalities for probability measures on the real line. Studia Math. 159, 481–497 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bartier J.-P., Dolbeault J.: Convex Sobolev inequalities and spectral gap. C. R. Math. Acad. Sci. Paris 342, 307–312 (2006)

    MATH  MathSciNet  Google Scholar 

  8. Beckner W.: A generalized Poincaré inequality for Gaussian measures. Proc. Am. Math. Soc. 105, 397–400 (1989)

    MATH  MathSciNet  Google Scholar 

  9. Blanchet A., Bonforte M., Dolbeault J., Grillo G., Vázquez J.: Hardy- Poincaré inequalities and applications to nonlinear diffusions. C. R. Math. Acad. Sci. Paris 344, 431–436 (2007)

    MATH  MathSciNet  Google Scholar 

  10. Blanchet A., Bonforte M., Dolbeault J., Grillo G., Vázquez J.: Asymptotics of the fast diffusion equation via entropy estimates. Arch. Rational Mech. Anal. 191, 347–385 (2009)

    Article  MATH  ADS  Google Scholar 

  11. Bobkov S.G., Götze F.: Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163, 1–28 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bobkov S.G., Tetali P.: Modified logarithmic Sobolev inequalities in discrete settings. J. Theoret. Probab. 19, 289–336 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bolley F., Gentil I.: Phi-entropy inequalities for diffusion semigroups. Preprint (2010). arXiv:0812.0800

  14. Bonforte M., Dolbeault J., Grillo G., Vázquez J.: Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities. Preprint (2009). arXiv:0907.2986

  15. Bouchard J.P., Mézard M.: Wealth condensation in a simple model of economy. Physica A 282, 536–545 (2000)

    Article  MATH  ADS  Google Scholar 

  16. Càceres M.J., Toscani G.: Kinetic approach to long time behavior of linearized fast diffusion equations. J. Stat. Phys. 128, 883–925 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Carrillo J.A., Lederman C., Markowich P.A., Toscani G.: Poincaré inequalities for linearizations of very fast diffusion equations. Nonlinearity 15, 565–580 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Cattiaux P., Gentil I., Guillin A.: Weak logarithmic Sobolev inequalities and entropic convergence. Probab. Theory Relat. Fields 139, 563–603 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Chafaï D.: Entropies, convexity, and functional inequalities: on Φ-entropies and Φ-Sobolev inequalities. J. Math. Kyoto Univ. 44, 325–363 (2004)

    MathSciNet  Google Scholar 

  20. Cox J.C., Ingersoll J.E., Ross S.A.: A theory of the term structure of interest rates. Econometrica 53, 385–407 (1985)

    Article  MathSciNet  Google Scholar 

  21. Denzler J., McCann R.: Fast diffusion to self-similarity: complete spectrum, long-time asymptotics, and numerology. Arch. Rational Mech. Anal. 175, 301–342 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Dolbeault J., Gentil I., Guillin A., Wang F.-Y.: L q-functional inequalities and weighted porous media equations. Potential Anal. 28, 35–59 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Dolbeault J., Nazaret B., Savaré G.: On the Bakry–Emery criterion for linear diffusions and weighted porous media equations. Commun. Math. Sci. 6, 477–494 (2008)

    MATH  MathSciNet  Google Scholar 

  24. Düring B., Matthes D., Toscani G.: Kinetic equations modelling wealth redistribution: a comparison of approaches. Phys. Rev. E 78, 050801 (2008)

    Article  Google Scholar 

  25. Feller W.: Diffusion processes in genetics. In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp. 227–246. University of California Press, Berkeley and Los Angeles, 1951

  26. Feller W.: Two singular diffusion problems. Ann. Math. 54, 173–182 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gearhart W.B., Martelli M.: A blood cell population model, dynamical diseases, and chaos. UMAP J. 11, 309–338 (1990)

    Google Scholar 

  28. Henry D.: Geometric theory of semilinear parabolic equations. In: Lecture Notes in Mathematics, vol. 840. Springer, Berlin, 1981

  29. Jüngel A., Matthes D.: An algorithmic construction of entropies in higher-order nonlinear PDEs. Nonlinearity 19, 633–659 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Jüngel A., Matthes D.: The Derrida-Lebowitz-Speer-Spohn equation: existence, nonuniqueness, and decay rates of the solutions. SIAM J. Math. Anal. 39, 1996–2015 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. Lasota A.: Ergodic problems in biology. Astérisque (Soc. Math. France) 50, 239–250 (1977)

    MathSciNet  Google Scholar 

  32. Latala R., Oleszkiewicz K.: Between Sobolev and Poincaré. In: Geometric Aspects of Functional Analysis, pp. 147–168. Lecture Notes in Math., vol. 1745. Springer, Berlin, 2000

  33. Ledoux M.: On an integral criterion for hypercontractivity of diffusion semigroups and extremal functions. J. Funct. Anal. 105, 444–465 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  34. Löfberg J.: YALMIP : A toolbox for Modeling and Optimization in MATLAB. In: Proceedings of the CACSD Conference, Taipei, Taiwan, 2004

  35. Muckenhoupt B.: Hardy’s inequality with weights. Studia Math. 44, 31–38 (1972)

    MATH  MathSciNet  Google Scholar 

  36. Pareschi L., Toscani G.: Self-similarity and power-like tails in nonconservative kinetic models. J. Stat. Phys. 124, 747–779 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. Rothaus O.S.: Hypercontractivity and the Bakry-Émery criterion for compact Lie groups. J. Funct. Anal. 65, 358–367 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  38. Solomon S.: Stochastic Lotka-Volterra systems of competing auto-catalytic agents lead generically to truncated Pareto power wealth distribution, truncated Levy distribution of market returns, clustered volatility, booms and crashes. In: Computational Finance, vol. 97 (Eds. A.-P.N. Refenes, A.N. Burgess, and J.E. Moody). Kluwer Academic Publishers, Amsterdam, 1998

  39. Tarski A.: A Decision Method for Elementary Algebra and Geometry, 2nd edn. University of California Press, Berkeley and Los Angeles, 1951

  40. Vázquez J.-L.: The Porous Medium Equation. Mathematical Theory. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Matthes.

Additional information

Communicated by L. Ambrosio

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matthes, D., Jüngel, A. & Toscani, G. Convex Sobolev Inequalities Derived from Entropy Dissipation. Arch Rational Mech Anal 199, 563–596 (2011). https://doi.org/10.1007/s00205-010-0331-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-010-0331-9

Keywords

Navigation