Skip to main content

Advertisement

Log in

Lower Bound for the Energy of Bloch Walls in Micromagnetics

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study a two-dimensional nonconvex and nonlocal energy in micromagnetics defined over S 2-valued vector fields. This energy depends on two small parameters, β and \({\varepsilon}\) , penalizing the divergence of the vector field and its vertical component, respectively. Our objective is to analyze the asymptotic regime \({\beta \ll \varepsilon \ll 1}\) through the method of Γ-convergence. Finite energy configurations tend to become divergence-free and in-plane in the magnetic sample except in some small regions of typical width \({\varepsilon}\) (called Bloch walls) where the magnetization connects two directions on S 2. We are interested in quantifying the limit energy of the transition layers in terms of the jump size between these directions. For one-dimensional transition layers, we show by Γ-convergence analysis that the exact line density of the energy is quadratic in the jump size. We expect the same behaviour for the two-dimensional model. In order to prove that, we investigate the concept of entropies. In the prototype case of a periodic strip, we establish a quadratic lower bound for the energy with a non-optimal constant. Then we introduce and study a special class of Lipschitz entropies and obtain lower bounds coinciding with the one-dimensional Γ-limit in some particular cases. Finally, we show that entropies are not appropriate in general for proving the expected sharp lower bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alouges F.: A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case. SIAM J. Numer. Anal. 34(5), 1708–1726 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alouges, F., Rivière, T., Serfaty, S.: Néel and cross-tie wall energies for planar micromagnetic configurations. ESAIM Control Optim. Calc. Var. 8, 31–68 (electronic), (2002), A tribute to J. L. Lions.

  3. Ambrosio L., De Lellis C., Mantegazza C.: Line energies for gradient vector fields in the plane. Calc. Var. Partial Differ. Equ. 9(4), 255–327 (1999)

    Article  MathSciNet  Google Scholar 

  4. Aviles, P., Giga, Y.: A mathematical problem related to the physical theory of liquid crystal configurations. In: Miniconference on Geometry and Partial Differential Equations, 2 (Canberra, 1986). Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 12, pp. 1–16. Austral. Nat. Univ., Canberra, 1987

  5. Aviles P., Giga Y.: On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg–Landau type energy for gradient fields. Proc. R. Soc. Edinb. Sect. A 129(1), 1–17 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brown W.F.: Micromagnetics. Wiley, New York (1963)

    Google Scholar 

  7. Conti S., De Lellis C.: Sharp upper bounds for a variational problem with singular perturbation. Math. Ann. 338(1), 119–146 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. De Lellis C., Otto F.: Structure of entropy solutions to the eikonal equation. J. Eur. Math. Soc. (JEMS) 5(2), 107–145 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Desimone A., Kohn R.V., Müller S., Otto F.: A reduced theory for thin-film micromagnetics. Commub. Pure Appl. Math. 55(11), 1408–1460 (2002)

    Article  MATH  Google Scholar 

  10. DeSimone A., Müller S., Kohn R.V., Otto F.: A compactness result in the gradient theory of phase transitions. Proc. R. Soc. Edinb. Sect. A 131(4), 833–844 (2001)

    Article  MATH  Google Scholar 

  11. DeSimone, A., Müller, S., Kohn, R.V., Otto, F.: Recent analytical developments in micromagnetics. In: The Science of Hysteresis, vol. 2, pp. 269–381. Elsevier Academic Press, Amsterdamm 2005

  12. Hubert A., Schäfer R.: Magnetic Domains : The Analysis of Magnetic Microstructures. Springer, Berlin (1998)

    Google Scholar 

  13. Ignat R.: A Γ-convergence result for Néel walls in micromagnetics. Calc. Var. Partial Differ. Equ. 36(2), 285–316 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ignat, R., Merlet, B.: Entropy method for line energies (in preparation)

  15. Ignat, R., Otto, F.: Compactness of the Landau state in thin-film micromagnetics (in preparation)

  16. Ignat R., Otto F.: A compactness result in thin-film micromagnetics and the optimality of the Néel wall. J. Eur. Math. Soc. (JEMS) 10(4), 909–956 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jabin P.-E., Otto F., Perthame B.: Line-energy Ginzburg–Landau models: zero-energy states. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1(1), 187–202 (2002)

    MATH  MathSciNet  Google Scholar 

  18. Jin W., Kohn R.V.: Singular perturbation and the energy of folds. J. Nonlinear Sci. 10(3), 355–390 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Murat F.: Compacité par compensation: condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8(1), 69–102 (1981)

    MATH  MathSciNet  Google Scholar 

  20. Poliakovsky A: Upper bounds for singular perturbation problems involving gradient fields. J. Eur. Math. Soc. (JEMS) 9(1), 1–43 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Rivière T., Serfaty S.: Limiting domain wall energy for a problem related to micromagnetics. Comm. Pure Appl. Math. 54(3), 294–338 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Tartar, L.: Compensated compactness and applications to partial differential equations. In: Nonlinear analysis and mechanics: Heriot–Watt Symposium, vol. IV. Res. Notes in Math., vol. 39, pp. 136–212. Pitman, Boston, 1979

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Ignat.

Additional information

Communicated by S. Müller

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ignat, R., Merlet, B. Lower Bound for the Energy of Bloch Walls in Micromagnetics. Arch Rational Mech Anal 199, 369–406 (2011). https://doi.org/10.1007/s00205-010-0325-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-010-0325-7

Keywords

Navigation