Skip to main content
Log in

Motion and Pinning of Discrete Interfaces

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We describe the motion of interfaces in a two-dimensional discrete environment by coupling the minimizing movements approach by Almgren, Taylor and Wang and a discrete-to-continuous analysis. We show that below a critical ratio of the time and space scalings we have no motion of interfaces (pinning), while above that ratio the discrete motion is approximately described by the crystalline motion by curvature on the continuum described by Almgren and Taylor. The critical regime is much richer, exhibiting a pinning threshold (small setsmove, large sets are pinned), partial pinning (portions of interfaces may not move), pinning after an initial motion (possibly to a non-convex limit set), “quantization” of the interface velocity, and non-uniqueness effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alicandro R., Braides A., Cicalese M.: Phase and anti-phase boundaries in binary discrete systems: a variational viewpoint. Netw. Heterog. Media 1, 85–107 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alicandro R., Cicalese M.: A general integral representation result for continuum limits of discrete energies with superlinear growth. SIAM J. Math. Anal. 36, 1–37 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alicandro, R., Cicalese, M.: Variational analysis of the asymptotics of the XY model. Arch. Ration. Mech. Anal. (2009, to appear)

  4. Alicandro R., Cicalese M., Gloria A.: Integral representation of the bulk limit of a general class of energies for bounded and unbounded spin systems. Nonlinearity 21, 1881–1910 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Almgren F., Taylor J.E.: Flat flow is motion by crystalline curvature for curves with crystalline energies. J. Diff. Geom. 42, 1–22 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Almgren F., Taylor J.E., Wang L.: Curvature driven flows: a variational approach. SIAM J. Control Optim. 50, 387–438 (1983)

    MathSciNet  MATH  Google Scholar 

  7. Arao Reis F.D.: Depinning transitions in interface growth models. Brazilian J. Phys. 33, 501–513 (2003)

    Article  ADS  Google Scholar 

  8. Bellettini G., Novaga M., Paolini M., Tornese C.: Convergence of discrete schemes for the Perona-Malik equation. J. Diff. Equ. 245, 892–924 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Bhattacharya K., Craciun B.: Effective motion of a curvature-sensitive interface through a heterogeneous medium. Interfaces Free Bound. 6, 151–173 (2004)

    MathSciNet  MATH  Google Scholar 

  10. Boykov, Y., Kolmogorov, V., Cremers, D., Delong, A.: An integral solution to surface evolution PDEs via Geo-Cuts. In: European Conference on Computer Vision (ECCV). LNCS, Vol. 3953 (Eds. Leonardis, A., Bischof, H. and Pinz, A), Graz, Austria. Springer, Heidleberg, pp. 409–422, May 2006

  11. Braides, A.: Handbook of Γ-convergence. In: Handbook of Differential Equations: Stationary PDEs, Vol. 3. (Eds. Chipot, M. and Quittner, P.), Elsevier, Amsterdam,1–113, 2006

  12. Braides, A.: Approximation of free-discontinuity problems. Lecture Notes in Math, Vol. 1694, Springer, Berlin, 1998

  13. Braides A.: Γ-Convergence for Beginners. Oxford University Press, Oxford (2002)

    Book  MATH  Google Scholar 

  14. Brakke, K.: The motion of a surface by its mean curvature. Mathematical Notes, Vol. 20, Princeton University Press, Princeton, New Jersey, 1978

  15. Cahn J., Mallet-Paret J., Van Vleck E.S.: Traveling wave solutions for systems of ODEs on a two-dimensional spatial lattice. SIAM J. Appl. Math. 59, 455–493 (1999)

    MathSciNet  MATH  Google Scholar 

  16. Carpio A., Bonilla L.L.: Depinning transitions in discrete reaction-diffusion equations. SIAM J. Appl. Math. 63, 1056–1082 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chambolle, A., Darbon, J.: On total variation minimization and surface evolution using parametric maximum flows. Preprint CMAP, Ecole Polytechnique, 2008

  18. Dirr N., Yip N.K.: Pinning and de-pinning phenomena in front propagation in heterogeneous media. Interfaces Free Bound. 8, 79–109 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fáth G.: Propagation failure of traveling waves in a discrete bistable medium. Phys. D 116, 176–190 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gage M., Hamilton R.S.: The heat equation shrinking convex plane curves. J. Diff. Geom. 23, 69–96 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Glasner K.B.: Homogenization of contact line dynamics. Interfaces Free Bound. 8, 523–542 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Glotzer S.C., Gyure M.F., Sciortino F., Coniglio A., Stanley H.E.: Pinning in phase-separating systems. Phys. Rev. E 49, 247–258 (1994)

    Article  ADS  Google Scholar 

  23. Lions P.L., Souganidis P.E.: Homogenization of degenerate second-order PDE in periodic and almost-periodic environments and applications. Ann. Inst. H. Poincaré Anal. Non Linéaire 22, 667–677 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Prat A., Li Y.-X.: Stability of front solutions in inhomogeneous media. Phys. D 186, 50–68 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Stancu A.: Uniqueness of self-similar solutions for a crystalline flow. Indiana Univ. Math. J. 45, 1157–1174 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Taylor J.E.: Motion of curves by crystalline curvature, including triple junctions and boundary points (part 1). Diff. Geom. Proc. Symp. Pure Math. 51, 417–438 (1993)

    Article  MATH  Google Scholar 

  27. Taylor J.E., Cahn J., Handwerker C.: Geometric models of crystal growth. Acta Metall. Mater. 40, 1443–1474 (1992)

    Article  ADS  Google Scholar 

  28. Xin J., Zhu J.: Quenching and propagation of bistable reaction-diffusion fronts in multidimensional periodic media. Phys. D 81, 94–110 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Braides.

Additional information

Communicated by M. Ortiz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braides, A., Gelli, M.S. & Novaga, M. Motion and Pinning of Discrete Interfaces. Arch Rational Mech Anal 195, 469–498 (2010). https://doi.org/10.1007/s00205-009-0215-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-009-0215-z

Keywords

Navigation