Skip to main content
Log in

The Boundary Riemann Solver Coming from the Real Vanishing Viscosity Approximation

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study the limit of the hyperbolic–parabolic approximation

$$\left\{\begin{array}{l@{\quad}l@{\quad}l} v^{\varepsilon}_t + \tilde{A} \left(v^{\varepsilon}, \, \varepsilon v^{\varepsilon}_x \right) v^{\varepsilon}_x = \varepsilon \tilde{B}(v^{\varepsilon} ) v^{\varepsilon}_{xx} \quad v^{\varepsilon} \in \mathbb{R}^N \cr \tilde{\rm \ss}(v^{\varepsilon} (t, \, 0)) \equiv \bar g \cr v^{\varepsilon} (0, \, x) \equiv \bar{v}_0. \end{array} \right.$$

The function \({\tilde {\ss}}\) is defined in such a way as to guarantee that the initial boundary value problem is well posed even if \({\tilde {B}}\) is not invertible. The data \({\bar {g}}\) and \({\bar {v}_{0}}\) are constant. When \({\tilde {B}}\) is invertible, the previous problem takes the simpler form

$$\left\{\begin{array}{l@{\quad}l@{\quad}l} v^{\varepsilon}_t + \tilde{A}\left(v^{\varepsilon}, \, \varepsilon v^{\varepsilon}_x \right) v^{\varepsilon}_x = \varepsilon \tilde{B}(v^{\varepsilon} ) v^{\varepsilon}_{xx}\quad v^{\varepsilon} \in \mathbb{R}^N \cr v^{\varepsilon} (t, \, 0) \equiv \bar v_b \cr v^{\varepsilon} (0, \, x) \equiv \bar{v}_0. \end{array} \right.$$

Again, the data \({\bar {v}_b}\) and \({\bar {v}_0}\) are constant. The conservative case is included in the previous formulations. Convergence of the \({v^{\varepsilon}}\) , smallness of the total variation and other technical hypotheses are assumed, and a complete characterization of the limit is provided. The most interesting points are the following: First, the boundary characteristic case is considered, that is, one eigenvalue of \({\tilde {A}}\) can be 0. Second, as pointed out before, we take into account the possibility that \({\tilde {B}}\) is not invertible. To deal with this case, we take as hypotheses conditions that were introduced by Kawashima and Shizuta relying on physically meaningful examples. We also introduce a new condition of block linear degeneracy. We prove that, if this condition is not satisfied, then pathological behaviors may occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amadori D.: Initial-boundary value problems for nonlinear systems of conservation laws. NoDEA 4, 1–42 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amadori D., Colombo R.M.: Viscosity Solutions and Standard Riemann Semigroup for Conservation Laws with Boundary. Rend. Sem. Mat. Univ. Padova 99, 219–245 (1998)

    MathSciNet  MATH  Google Scholar 

  3. Ancona, F., Bianchini, S.: Vanishing viscosity solutions for general hyperbolic systems with boundary. Preprint IAC-CNR 28, 2003

  4. Ancona F., Marson A.: Existence theory by front tracking for general nonlinear hyperbolic systems. Arch. Ration. Mech. Anal. 185(2), 287–340 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ball J., Kirchheim B., Kristensen J.: Regularity of quasiconvex envelopes. Calc. Var. 11(4), 333–359 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Benzoni-Gavage S., Serre D., Zumbrun K.: Alternate Evans functions and viscous shock waves. SIAM J. Math. Anal. 32(5), 929–962 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bianchini S.: On the Riemann Problem for Non-Conservative Hyperbolic Systems. Arch. Ration. Mech. Anal. 166(1), 1–26 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bianchini S., Bressan A.: BV estimates for a class of viscous hyperbolic systems. Indiana Univ. Math. J. 49, 1673–1713 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bianchini S., Bressan A.: A case study in vanishing viscosity. Discrete Contin. Dyn. Syst. 7, 449–476 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bianchini S., Bressan A.: A center manifold technique for tracing viscous waves. Comm. Pure Appl. Anal. 1, 161–190 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bianchini S., Bressan A.: Vanishing viscosity solutions of non linear hyperbolic systems. Ann. Math. 161, 223–342 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bianchini S., Hanouzet B., Natalini R.: Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Comm. Pure Appl. Math. 60(11), 1559–1622 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bianchini, S., Spinolo, L.V.: Invariant manifolds for a singular ordinary differential equation. Preprint SISSA 04/2008/M, 2008. http://arxiv.org/0801.4425

  14. Bressan A.: Global solution to systems of conservation laws by wave-front-tracking. J. Math. Anal. Appl. 170, 414–432 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bressan A.: The unique limit of the Glimm scheme. Arch. Ration. Mech. Anal. 130, 205–230 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bressan A.: Hyperbolic Systems of Conservation Laws. The One Dimensional Cauchy Problem. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  17. Bressan, A.: Lecture notes on the center manifold theorem, pp. 1–16, 2003. http://www.math.psu.edu/bressan

  18. Bressan A., Colombo R.M.: The semigroup generated by 2 × 2 conservation laws. Arch. Ration. Mech. Anal. 133, 1–75 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bressan, A., Crasta, G., Piccoli, B.: Well-posedness of the Cauchy problem for n × n conservation laws. Mem. Am. Math. Soc. 694 (2000)

  20. Bressan A., Goatin P.: Olenik type estimates and uniqueness for n × n conservation laws. J. Differ. Equ. 156, 26–49 (1999)

    Article  ADS  MATH  Google Scholar 

  21. Bressan A., LeFloch P.: Uniqueness of weak solutions to systems of conservation laws. Arch. Ration. Mech. Anal. 140, 301–317 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bressan A., Lewicka M.: A uniqueness condition for hyperbolic systems of conservation laws. Discrete Contin. Dyn. Syst. 6, 673–682 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bressan A., Liu T.P., Yang T.: L 1 stability estimates for n × n conservation laws. Arch. Ration. Mech. Anal. 149, 1–22 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Clarke F.H.: Optimization and Nonsmooth Analysis. Wiley-Interscience, London (1983)

    MATH  Google Scholar 

  25. Dafermos C.M.: Hyperbolic Conservation Laws in Continuum Physics, 2nd edn. Springer, Berlin (2005)

    Book  MATH  Google Scholar 

  26. Donadello C., Marson A.: Stability of front tracking solutions to the initial and boundary value problem for systems of conservation laws. NoDEA 14, 569–592 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dubois F., Le Floch P.: Boundary conditions for Nonlinear Hyperbolic Systems of Conservation Laws. J. Differ. Equ. 71, 93–122 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Gisclon M.: Etude des conditions aux limites pour un système hyperbolique, via l’approximation parabolique. J. Maths. Pures Appl. 75, 485–508 (1996)

    MATH  Google Scholar 

  29. Glimm J.: Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math. 18, 697–715 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  30. Godlewski E., Raviart P.: Numerical Approximations of Hyperbolic Systems of Conservation Laws. Springer, New York (1996)

    Book  MATH  Google Scholar 

  31. Goodman, J.: Initial Boundary Value Problems for Hyperbolic Systems of Conservation Laws. Ph.D. Thesis, California University, 1982

  32. Griewank A., Rabier P.J.: On the smoothness of convex envelopes. Trans. AMS 322(2), 691–709 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  33. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge, 1995

  34. Kawashima, S.: Systems of hyperbolic-parabolic type, with applications to the equations of magnetohydrodynamics. Ph.D. Thesis, Kyoto University, 1983

  35. Kawashima S.: Large-time behavior of solutions to hyperbolic–parabolic systems of conservation laws and applications. Proc. Roy. Soc. Edinburgh Sect. A 106, 169–194 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kawashima S., Shizuta Y.: Systems of equations of hyperbolic–parabolic type with applications to the discrete Boltzmann equation. Hokkaido Math. J. 14(2), 249–275 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kawashima S., Shizuta Y.: On the normal form of the symmetric hyperbolic–parabolic systems associated with the conservation laws. Tôhoku Math. J. 40, 449–464 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  38. Knopp K.: Theory of Functions, Parts I and II. Dover, New York (1947)

    Google Scholar 

  39. Lax P.: Hyperbolic systems of conservation laws II. Comm. Pure Appl. Math. 10, 537–566 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  40. Liu T.P.: The Riemann Problem for General Systems of Conservation Laws. J. Differ. Equ. 18, 218–234 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Rousset, F.: Navier–Stokes equation and block linear degeneracy, Personal Communication

  42. Rousset F.: Inviscid boundary conditions and stability of viscous boundary layers. Asymptot. Anal. 26, 285–306 (2001)

    MathSciNet  MATH  Google Scholar 

  43. Rousset F.: The residual boundary conditions coming from the real vanishing viscosity method. Discrete Contin. Dyn. Syst. 8(3), 605–625 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  44. Rousset F.: Characteristic boundary layers in real vanishing viscosity limits. J. Differ. Equ. 210, 25–64 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Sablé-Tougeron M.: Méthode de Glimm et problème mixte. Ann. Inst. Henri Poincaré Anal. Non Linéaire 10(4), 423–443 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Serre D.: Systems of Conservation Laws, I, II. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  47. Serre D., Zumbrun K.: Boundary Layer Stability in Real Vanishing Viscosity Limit. Comm. Math. Phys. 221, 267–292 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Spinolo L.V.: Vanishing viscosity solutions of a 2 × 2 triangular hyperbolic system with Dirichlet conditions on two boundaries. Indiana Univ. Math. J. 56, 279–364 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura V. Spinolo.

Additional information

Communicated by A. Bressan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bianchini, S., Spinolo, L.V. The Boundary Riemann Solver Coming from the Real Vanishing Viscosity Approximation. Arch Rational Mech Anal 191, 1–96 (2009). https://doi.org/10.1007/s00205-008-0177-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-008-0177-6

Keywords

Navigation