Skip to main content
Log in

Optimality Conditions for Mass Design Problems and Applications to Thin Plates

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We derive necessary and sufficient optimality conditions for a quite large class of structural design problems which can be formulated as follows: under a given load and a total volume constraint, minimize a suitable notion of compliance among all admissible mass distributions, represented by positive measures with prescribed integral mean. As a special case, we focus attention on the optimization of thin plates; we detail the corresponding optimality conditions and we show how they can be handled in order to determine analytically some optimal plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaire G., Kohn R. (1993) Optimal design for minimum weight and compliance in plane stress using extremal microstructures. Eur. J. Mech. A Solids 12, 839–878

    MATH  MathSciNet  Google Scholar 

  2. Ambrosio L.: Lecture Notes on Optimal Transport Problems. Mathematical Aspects of Evolving Interfaces (Funchal, 2000). Lecture Notes in Mathematics 1812, Springer, Berlin, 1–52, 2003

  3. Antonić N., Balenović N. (1999) Optimal design for plates and relaxation. 7th International Conference on Operational Research (Rovinj, 1998). Math. Commun. 4, 111–119

    MathSciNet  MATH  Google Scholar 

  4. Banichuk N.V. (1983) Problems and Methods of Optimal Structural Design. Plenum Press, New York

    Google Scholar 

  5. Bendsoe, M.: Generalized plate models and optimal design. Homogenization and Effective Moduli of Materials and Media (Minneapolis, Minn., 1984/1985), 1–26, IMA Vol. Math. Appl., 1, Springer, New York, 1986

  6. Bonnetier E., Conca C. (1999) Relaxation totale d’un problème d’optimisation de plaques. C. R. Math. Acad. Sci. Paris 317, 931–936

    MathSciNet  Google Scholar 

  7. Bonnetier E., Conca C. (1994) Approximation of Young measures by functions and application to a problem of optimal design for plates with variable thickness. Proc. Roy. Soc. Edinburgh Sect. A 124, 399–422

    MATH  MathSciNet  Google Scholar 

  8. Bonnetier, E., Vogelius, M.: Relaxation of a compliance functional for a plate optimization problem. Applications of Multiple Scaling in Mechanics (Paris, 1986), 31–53, Rech. Math. Appl., 4, Masson, Paris, 1987

  9. Bouchitté, G.: Optimization of light structures: the vanishing mass conjecture. Homogenization, 2001 (Naples), 131–145 GAKUTO Internat. Ser. Math. Sci. Appl., 18, Gakkötosho, Tokyo, 2003

  10. Bouchitté G., Buttazzo G. (2001) Characterization of optimal shapes and masses through Monge-Kantorovich equations. J. Eur. Math. Soc. 3, 139–168

    Article  MATH  Google Scholar 

  11. Bouchitté G., Buttazzo G., De Pascale L. (2003) A p-Laplacian approximation for some mass optimization problems. J. Opt. Theory Appl. 118, 1–25

    Article  MATH  Google Scholar 

  12. Bouchitté G., Buttazzo G., Fragalà I.: Mean curvature of a measure and related variational problems. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 25: 179–196 (1997)

    Google Scholar 

  13. Bouchitté G., Buttazzo G., Seppecher P. (1997) Energies with respect to a measure and applications to low dimensional structures. Calc. Var. Partial Differential Equations 5, 37–54

    Article  MATH  MathSciNet  Google Scholar 

  14. Bouchitté, G., Fragalà, I.: Variational theory of weak geometric structures: the measure method and its applications. Variational Methods for Discontinuous Structures, 19–40, Progr. Nonlinear Differential Equations Appl., 51, Birkhäuser, Basel, 2002

  15. Bouchitté G., Fragalà I. (2003) Second order energies on thin structures: variational theory and non-local effects. J. Funct. Anal. 204, 228–267

    Article  MATH  MathSciNet  Google Scholar 

  16. Bouchitté G., Valadier M. (1988) Integral representation of convex functionals on a space of measures. J. Funct. Anal. 80, 398–420

    Article  MATH  MathSciNet  Google Scholar 

  17. Caillerie, D.: Models of thin or thick plates and membranes derived from linear elasticity. Applications of Multiple Scaling in Mechanics. Masson, Paris, 54–68, 1987

  18. Cheng K.T., Olhoff N. (1981) An investigation concerning optimal design of solid elastic plates. Internat. J. Solids Structures 17, 305–323

    Article  MATH  MathSciNet  Google Scholar 

  19. Cheng K.T., Olhoff N. (1982) Regularized formulation for optimal design of axisymmetric plates. Internat. J. Solids Structures 18, 153–169

    Article  MATH  Google Scholar 

  20. Ekeland I., Temam R. (1976) Analyse Convexe et Problèmes Variationnels. Dunod-Gauthier Villars, Paris

    Google Scholar 

  21. Francfort G., Murat F. (1986) Homogenization and optimal bounds in linear elasticity. Arch. Ration. Mech. Anal. 94, 307–334

    Article  MATH  MathSciNet  Google Scholar 

  22. Gibiansky, L.V., Cherkaev, A.V.: Design of composite plates of extremal rigidity. Topics in the Mathematical Modelling of Composite Materials, 95–137, Progr. Nonlinear Differential Equations Appl., 31, Birkhäuser, Boston, MA, 1997

  23. Goffman C., Serrin J. (1964) Sublinear functions of measures and variational integrals. Duke Math. J. 31, 159–178

    Article  MATH  MathSciNet  Google Scholar 

  24. Golay F., Seppecher P. (2001) Locking materials and the topology of optimal shapes. Eur. J. Mech. A Solids 20, 631–644

    Article  MATH  MathSciNet  Google Scholar 

  25. Hiai F., Umegaki H. (1977) Integrals, conditional expectations and martingales functions. J.~Multivariate Anal. 7, 149–182

    Article  MATH  MathSciNet  Google Scholar 

  26. Kohn R., Strang G. (1986) Optimal design and relaxation of variational problems I-III. Comm. Pure Appl. Math. 39, 113–137, 139–182, 353–377

    Google Scholar 

  27. Kohn R., Vogelius M. (1984) A new model for thin plates with rapidly varying thickness. Internat. J. Solids Structures 20, 333–350

    Article  MATH  Google Scholar 

  28. Kohn, R., Vogelius, M.: Thin plates with varying thickness, and their relation to structural optimization. Homogenization and Effective Moduli of Materials and Media (Minneapolis, Minn., 1984/1985), 126–149, IMA Vol. Math. Appl., 1, Springer, New York, 1986

  29. Lurie K.A., Cherkaev A.V. (1984) G-closure of some particular sets of admissible material characteristics for the problem of bending of thin plates. J. Opt. Theory Appl. 42, 305–315

    Article  MATH  MathSciNet  Google Scholar 

  30. Michell A.G.M. (1904) The limits of economy of material in frame structures. Phil. Mag. 6, 589–597

    Google Scholar 

  31. Muñoz J. (2000) On some necessary conditions of optimality for a nonlocal variational principle. Siam J. Control Optim. 38, 1521–1533

    Article  MATH  MathSciNet  Google Scholar 

  32. Muñoz J., Pedregal P. (1998) On the relaxation of an optimal design problem for plates. Asymptotic Anal. 16, 125–140

    MATH  Google Scholar 

  33. Murat, F., Tartar, L.: Calcul des variations et homogénéisation. Les Méthodes de l’Homogénéisation. Théorie et Applications en Physique, Eyrolles, Paris, 319–369, 1985

  34. Olhoff N., Taylor J.E. (1983) On structural optimization. J. Appl. Mech. 50, 1134–1151

    Article  MathSciNet  Google Scholar 

  35. Rockafellar R.T. (1970) Convex Analysis. Princeton University Press, Princeton

    MATH  Google Scholar 

  36. Sorin S. (2002) A First Course on Zero-Sum Repeated Games. Springer-Verlag, Berlin

    MATH  Google Scholar 

  37. Sprekels J., Tiba D. (1999) A duality approach in the optimization of beams and plates. SIAM J. Control Optim. 39, 486–501

    MathSciNet  Google Scholar 

  38. Stein E.M. (1970) Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series 30, Princeton

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Bouchitté.

Additional information

Communicated by L. Ambrosio

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouchitté, G., Fragalà, I. Optimality Conditions for Mass Design Problems and Applications to Thin Plates. Arch Rational Mech Anal 184, 257–284 (2007). https://doi.org/10.1007/s00205-006-0022-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-006-0022-8

Keywords

Navigation