Skip to main content
Log in

Change of Sign of the Corrector’s Determinant for Homogenization in Three-Dimensional Conductivity

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract.

In this paper we study the positivity of the determinant of the local electric field in a conducting composite. We know by [1] that the positivity holds true in two dimensions for any periodic structure. Using a different approach from [11] we prove that is also the case for a laminate microstructure in any dimension. However, and this is the main result of the paper, we provide an example of a two-phase three-dimensional periodic composite for which the determinant changes sign.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alessandrini, G., Nesi, V.: Univalent σ-harmonic mappings. Arch. Rational Mech. Anal. 158, 155–171 (2001)

    MathSciNet  MATH  Google Scholar 

  2. Alessandrini, G., Nesi, V.: Univalent σ-harmonic mappings: connections with quasiconformal mappings. J. Anal. Math. 90, 197–215 (2003)

    MathSciNet  Google Scholar 

  3. Alessandrini, G., Nesi, V.: Univalent σ-harmonic mappings: applications to composites. ESAIM Control Optim. Calc. Var. 7, 379–406 (2002) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alessandrini, G., Nesi, V.: Area formulas for σ-harmonic mappings. Nonlinear problems in mathematical physics and related topics, I, Int. Math. Ser. (N. Y.), 1, Kluwer/Plenum, New York, 2002, pp. 1–21

  5. Allaire, G., Lods, V.: Minimizers for a double-well problem with affine boundary conditions. Proc. Roy. Soc. Edin., Section A 129, 439–466 (1999)

    Google Scholar 

  6. Bakhvalov, N.S.: Homogenized characteristics of bodies with a periodic structure. Doklady Akad. Nauk SSSR 218, 1046–1048 (1974)

    Google Scholar 

  7. Ball, J.: A version of the fundamental theorem for Young measures. In: Partial Differential Equations and Continuum Models of Phase Transitions, M. Rascle, D. Serre & M. Slemrod, (eds.), Springer-Verlag, 1989, pp. 207–215

  8. Bauman, P., Marini, A., Nesi, V.: Univalent solutions of an elliptic system of partial differential equations arising in homogenization. Indiana Univ. Math. J. 50, 747–757 (2001)

    MathSciNet  MATH  Google Scholar 

  9. Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. North-Holland, 1978

  10. Briane, M.: Correctors for the homogenization of a laminate. Adv. Math. Sci. Appl. 4, 357–379 (1994)

    MathSciNet  MATH  Google Scholar 

  11. Briane, M., Nesi, V.: Is it wise to keep laminating? To appear in ESAIM Control Optim. Calc. Var.

  12. Choquet, G.: Sur un type de transformation analytique généralisant la representation conforme et définie au moyen de fonctions harmoniques. Bull. Sci. Math. 69, 156–165 (1945)

    MathSciNet  MATH  Google Scholar 

  13. Dacorogna, B.: Weak continuity and weak lower semicontinuity of nonlinear functionals. Lecture Notes in Mathematics, Vol. 922, Springer Verlag, 1982

  14. De Giorgi, E., Spagnolo, S.: Sulla convergenza degli integrali dell’energia per operatori ellitici del secondo ordine. Boll. Unione Mat. Ita. 8, 391–411 (1973)

    MATH  Google Scholar 

  15. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer, 1977

  16. Kinderlehrer, D., Pedregal, P.: Characterizations of gradient Young’s measures. Arch. Rational Mech. Anal. 115, 329–365 (1991)

    MathSciNet  MATH  Google Scholar 

  17. Kneser, H.: L-sung der Aufgabe 41. Jber. Deutsch. Math.-Verein. 35, 123–124 (1926)

    Google Scholar 

  18. Kohn, R.: The relaxation of a double-well energy. Continuum Mechanics and Thermodynamics 3, 193–236 (1991)

    MathSciNet  MATH  Google Scholar 

  19. Laugesen, R.S.: Injectivity can fail for higher-dimensional harmonic extensions. Complex Variables 28, 357–369 (1996)

    MathSciNet  MATH  Google Scholar 

  20. Lewy, H.: On the non-vanishing of the Jacobian in certain one-to-one mappings. Bull. Am. Math. Soc. 42, 689–692 (1936)

    MATH  Google Scholar 

  21. Liu, H., Liao, G.: A note on harmonic maps. Appl. Math. Lett. 9, 95–97 (1996)

    Article  Google Scholar 

  22. Melas, A.: An example of a harmonic map between euclidean balls. Proc. Am. Math. Soc. 117, 857–859 (1993), MR 93d:5803

    MathSciNet  MATH  Google Scholar 

  23. Milton, G.W.: The Theory of Composites. Cambridge University Press, 2002

  24. Morrey, C.B.: Quasiconvexity and the lower semicontinuity of multiple integrals. Pacific Journal of Mathematics 2, 25–53 (1952)

    MathSciNet  MATH  Google Scholar 

  25. Murat, F., Tartar, T.: H-convergence. Topics in the Mathematical Modelling of Composite Materials, L. Cherkaev & R.V. Kohn, (eds.), Progress in Nonlinear Differential Equations and their Applications, Birkaüser, Boston, 1998, pp. 21–43

  26. Nesi, V.: Bounds on the effective conductivity of 2d composites made of n≥ 3 isotropic phases in prescribed volume fractions: the weighted translation method. Proc. Roy. Soc. Edinburgh Sect. A 125, 1219–1239 (1995)

    MathSciNet  MATH  Google Scholar 

  27. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Prentice-Hall Partial Differential Equations, 1967

  28. Radó, T.: Aufgabe 41. Jber. Deutsch. Math.-Verein. 35, 49 (1926)

    Google Scholar 

  29. Sverak, V.: Rank-one convexity does not imply quasiconvexity. Proc. Roy. Soc. Edin. Section A 120, 185–189 (1992)

    MathSciNet  MATH  Google Scholar 

  30. Tartar, L.: Compensated compactness and applications to partial differential equations. Nonlinear Analysis and Mechanics, Research Notes in Mathematics, R.J. Knops, (ed.), Vol. 39, Pitman, 1979, pp. 136–212

  31. Tartar, L.: The compensated compactness method applied to systems of conversations laws. In: Systems of Nonlinear Partial Differential Equations, J. Ball, (ed.), Reidel, 1982

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme W. Milton.

Additional information

Communicated by the Editors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briane, M., Milton, G. & Nesi, V. Change of Sign of the Corrector’s Determinant for Homogenization in Three-Dimensional Conductivity. Arch. Rational Mech. Anal. 173, 133–150 (2004). https://doi.org/10.1007/s00205-004-0315-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-004-0315-8

Keywords

Navigation