Skip to main content
Log in

Fungal community diversity of heavy metal contaminated soils revealed by metagenomics

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The inappropriate disposal of toxic compounds generated by industrial activity has been impacting the environment considerably. Microbial communities inhabiting contaminated sites may represent interesting ecological alternatives for the decontamination of environments. The present work aimed to investigate the fungal diversity and its functionality contained in stream sediments with industrial waste contaminated with heavy metals by using metagenomic approach. A total of 12 fungal orders were retrieved from datasets and, at phylum level, Ascomycota was the most abundant, followed by Basidiomycota, Chytridiomycota and Blastocladiomycota. Higher abundance of sequences was encountered within the less contaminated site, while the lower abundance was found in the sample with the higher contamination with lead. Gene sequences related to DNA repair and heavy metals biosorption processes were found in the four samples analyzed. The genera Aspergillus and Chaetomium, and Saccharomycetales order were highly present within all samples, showing their potential to be used for bioremediation studies. The present work demonstrated the importance of using the metagenomic approach to understand the dynamics and the possible metabolic pathways associated with fungal communities related to environmental samples containing heavy metals, as well as evidenced the importance of improving culturomics techniques for isolating strains with potential application in bioremediation processes of environments contaminated with heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel Azeen AM, El-Morsy EM, Nour El-Dein MM, Rashad HM (2015) Occurrence and diversity of mycobiota in heavy metal contaminated sediments of Mediterranean coastal lagoon El_Manzala, Egypt. Mycosphere 6:228–240

    Article  Google Scholar 

  • Aguiar JE, Marins RV, Almeida MD (2007) Comparação de metodologias de digestão de sedimentos marinhos para caracterização da geoquímica de metais-traço na plataforma continental Nordeste oriental brasileira. Geochim Bras 21:304–323

    Google Scholar 

  • Ahmad I, Zafar S, Ahmad F (2005) Heavy Metal Biosorption potential of Aspergillus and Rhizopus sp. isolated from Wastewater treated soil. J Appl Sci Environ Manag 9:123–126

    Google Scholar 

  • Akhtar S, Mahmood-ul-Hassan M, Ahmad R, Suthor V, Yasin M (2013) Metal tolerance potential of filamentous fungi isolated from soils irrigated with untreated municipal effluent. Soil Environ 32:55–62

    CAS  Google Scholar 

  • Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc

  • Baldrian P (2003) Interactions of heavy metals with white-rot fungi. Enzyme Microb Technol 32:78–91

    Article  CAS  Google Scholar 

  • Barone R, De Santi C, Esposito FP, Tedesco P, Galati F, Visone M, Di Scala A, De Pascale D (2014) Metagenomics, a valuable tool for enzymes and bioactive compounds discovery. Front Mar Sci 04:1–6

    Google Scholar 

  • Beale DJ, Karpe AV, Jadhav S, Muster TH, Palombo EA (2015) Omics-based approaches and their use in the assessment of microbial-influenced corrosion of metals. Corros Rev 34:1–14

    Article  CAS  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JP (2012) Decontamination of heavy metals: processes mechanisms and applications. CRC Press

    Book  Google Scholar 

  • Costa PS, Reis MP, Ávila MP, Leite LR, de Araújo FMG, Salim ACM, Oliveira G, Barbosa F, Chartone-Souza E, Nascimento AMA (2015) Metagenome of a microbial community inhabiting a metal-rich tropical stream sediment. PLoS ONE 10:1–21

    CAS  Google Scholar 

  • Dhankhar R, Hooda A (2011) Fungal biosorption—an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environ Technol 32:467–491

    Article  CAS  PubMed  Google Scholar 

  • Dopson M, Baker-Austin C, Koppineedi PR, Bond PL (2003) Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. Microbiology 149:1959–1970

    Article  CAS  PubMed  Google Scholar 

  • Feng G, Xie T, Wang X, Bai J, Tang L, Zhao H, Wei W, Wang M, Zhao Y (2018) Metagenomic analysis of microbial community and function involved in cd-contaminated soil. BMC Microbiol 18:1–13

    Article  CAS  Google Scholar 

  • Fidalgo CIA (2011) Heavy metal resistance in extremophilic yeasts a molecular and physiological approach. Dissertation, Universidade de Lisboa

  • Georg RC, Gomes SL (2007) Transcriptome analysis in response to heat shock and cadmium in the aquatic fungus Blastocladiella emersonii. Eukaryot Cell 6:1053–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) Past: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:4–9

    Google Scholar 

  • Haruma T, Yamaji K, Masuya H, Hanyu K (2018) Root endophytic Chaetomium cupreum promotes plant growth and detoxifies aluminum in Miscanthus sinensis Andersson growing at the acidic mine site. Plant Species Biol 33:109–122

    Article  Google Scholar 

  • Hemme CL, Deng Y, Gentry TJ, Fields MW, Wu L, Barua S, Barry K, Tringe SG, Watson DB, He Z, Hazen TC, Tiedje JM, Rubin EM, Zhou J (2010) Metagenomic insights into evolution of a heavy metal-contaminated groundwater microbial community. ISME J 4:660–672

    Article  CAS  PubMed  Google Scholar 

  • Hiraoka S, Yang CC, WaSaki W (2016) Metagenomics and bioinformatics in microbial ecology: current status and beyond. Microbes Environ 31:204–212

    Article  PubMed  PubMed Central  Google Scholar 

  • Iram S, Ahmad I, Javed B, Yaqoob S, Akhtar K, Kazmi MR, Zaman BU (2009) Fungal tolerance to heavy metals. Pak J Bot 41:2583–2594

    Google Scholar 

  • Iram S, Parveen K, Usman J, Nasir K, Akhtar N, Arou S, Ahmad I (2012) Heavy metal tolerance of filamentous fungal strains isolated from soil irrigated with industrial wastewater. Biologija 58:107–116

    Article  CAS  Google Scholar 

  • Iskandar NL, Zainudin NAIM, Tan SG (2011) Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem. J Environ Sci 23:824–830

    Article  CAS  Google Scholar 

  • Islam MS, Saha AK, Mosaddeque HQM, Amin MR, Islam MM (2008) In vitro studies on the reaction of fungi Trichoderma to different herbicides used in tea plantation. Int J Sustain Crop Prod 3:27–30

    Google Scholar 

  • Jerônimo GH, de Jesus AL, Marano AV, James TY, de Souza JI, Rocha SCO, Pires-Zottarelli CLA (2015) Diversidade de blastocladiomycota e chytridiomycota do parque estadual da ilha do cardoso, cananéia, SP, Brasil. Hoehnea 42:135–163

    Article  Google Scholar 

  • Jia T, Wang R, Fan X, Chai B (2018) A Comparative study of fungal community structure, diversity and richness between the soil and the phyllosphere of native grass species in a Copper Tailings Dam in Shanxi Province China. Appl Sci 8:1297. https://doi.org/10.3390/app8081297

    Article  CAS  Google Scholar 

  • Joshi BH (2014) Evaluation and characterization of heavy metal resistant fungi for their prospects in bioremediation. J Environ Res Dev 8:876–882

    Google Scholar 

  • Khamesy SJ, Hamidian AH, Atghia O (2016) Identification of the fungi absorbing heavy metals isolated from waste deposits of zinc factories, Zanjan province, Iran. Mycol Iran 3:65–73

    Google Scholar 

  • Lehembre F, Doillon D, David E, Perotto S, Baude J, Foulon J, Harfouche L, Vallon L, Poulain J, Da Silva C, Wincher P, Oger-Desfeux C, Richaud P, Colpaert JV, Chalot M, Fraissinet-Tachet L, Blaudez D, Marmeisse R (2013) Soil metatranscriptomics for mining eukaryotic heavy metal resistance genes. Environ Microbiol 5:1–37

    Google Scholar 

  • Magurran AF (2004) Measuring biological diversity. Blackwell, Oxford

    Google Scholar 

  • Meyer F, Paarman D, D’Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards RA (2008) The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinform 9:386

    Article  CAS  Google Scholar 

  • Mosier AC, Miller CS, Frischkorn KR, Ohm RA, Li Z, LaButti K, Lapidus A, Lipzen A, Chen C, Johnson J, Lindquist EA, Pan C, Hettich RL, Grigoriev IV, Singer SW, Banfield JF (2016) Fungi contribute critical but spatially varying roles in nitrogen and carbon cycling in acid mine drainage. Front Microbiol 7:1–18

    Article  Google Scholar 

  • Nogueira IS, Nabout JC, Oliveira JE, Silva KD (2008) Diversidade (alfa, beta e gama) da comunidade fitoplanctônica de quatro lagos artificiais urbanos do município de Goiânia, GO. Hoehnea 35:219–233

    Article  Google Scholar 

  • Nurk S, Meleshko D, Korobeynikov A, Pevzner PA (2017) metaSPAdes: a new versatile metagenomic assembler. Genome Res 27:824–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oladipo OG, Awotoye OO, Olayinka A, Ezeokoli OT, Maboeta MS, Bezuidenhout CC (2016) Heavy metal tolerance potential of Aspergillus strains isolated from mining sites. Biorem J 20:287–297

    Article  CAS  Google Scholar 

  • Page AJ, De Silva N, Hunt M, Quail MA, Parkhill J, Harris SR, Otto TD, Keane JA (2016) Robust high-throughput prokaryote de novo assembly and improvement pipeline for Illumina data. Microb Genom. https://doi.org/10.1099/mgen.0.000083

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfister CA, Meyer F, Antonopoulos DA (2010) Metagenomic profiling of a microbial assemblage associated with the California mussel: a node in networks of carbon and nitrogen cycling. PLoS ONE 5:e105180

    Article  CAS  Google Scholar 

  • Pócsi I (2011) Toxic metal/metalloid tolerance in fungi—a biotechnology-oriented approach. In: Banfalvi G (ed) Cellular effects of heavy metals. Springer, Dordrecht, pp 31–58

    Chapter  Google Scholar 

  • Pryszcz LP, Gabaldón T (2016) Redundans: an assembly pipeline for highly heterozygous genomes. Nucleic Acids Res 44:e113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qayyum S, Khan I, Maqbool F, Zhao Y, Gu Q, Peng G (2016) Isolation and characterization of heavy metal resistant fungal isolates from industrial soil in China. Pakistan J Zool 48:1241–1247

    CAS  Google Scholar 

  • Rasool A, Irum S (2014) Toxic metal effect on filamentous fungi isolated from the contaminated soil of Multan and Gujranwala. J Bioresour Manag 1:38–51

    Article  Google Scholar 

  • Tsai SL, Singh S, Chen W (2009) Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Curr Opin Biotechnol 20:659–667

    Article  CAS  PubMed  Google Scholar 

  • USEPA (1994) Method 3015, Microwave assisted acid digestion of aqueous samples and extracts. USEPA, Washington

    Google Scholar 

  • Viti C, Marchi E, Decorosi F, Giovannetti L (2014) Molecular mechanisms of Cr (VI) resistance in bacteria and fungi. FEMS Microbiol Rev 38:633–659

    Article  CAS  PubMed  Google Scholar 

  • Woldeamanuale TB (2017) Isolation, screening and identification of cadmium tolerant fungi and their removal potential. J Forensic Sci Criminal Investig 5:555–656

    Google Scholar 

  • World Health Organisation WHO (1989) Report of 33rd meeting Joint FAO/WHO Joint Expert committee on food additives Toxicological evaluation of certain food additives and contaminants No. 24 International Programme on Chemical Safety WHO Geneva

  • Xavier LC, Costa PES, Hissa DC, Melo VMM, Falcão RM, Balbino VQ, Mendonça LAR, Lima MGS, Coutinho HDM, Verde LCL (2019) Evaluation of the microbial diversity and heavy metal resistance genes of a microbial community on contaminated environment. Appl Geochem 105:1–6

    Article  CAS  Google Scholar 

  • Yin H, Niu J, Ren Y, Cong J, Zhang X, Fan F, Xiao Y, Zhang X, Deng J, Xie M, He Z, Zhou J, Liang Y, Liu X (2015) An integrated insight into the response of sedimentary microbial communities to heavy metal contamination. Sci Rep 5:1–12

    Google Scholar 

  • Younus H (2018) Therapeutic potentials of superoxide dismutase. Int J Health Sci 12:88–93

    CAS  Google Scholar 

  • Zhang X, Niu J, Liang Y, Liu X, Yin H (2016) Metagenome-scale analysis yields insights into the structure and function of microbial communities in a copper bioleaching heap. BMC Genet 17:4–12

    Google Scholar 

  • Zhao D, Li T, Shen M, Wang J, Zhao Z (2015) Diverse strategies conferring extreme cadmium (Cd) tolerance in the dark septate endophyte (DSE), Exophiala pisciphila: evidence from RNA-seq data. Microbiol Res 170:27–35

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank FUNCAP (Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico, Process number DCR-0024-01438.01.00/12) for their financial support. L. C. L. Verde was supported by the FUNCAP. We also thank to the CEGENBIO (Central de Genômica e Bioinformática do NPDM/UFC), by the genomic analysis.

Funding

Funcap - CEARENSE FOUNDATION FOR SUPPORT TO SCIENTIFIC AND TECHNOLOGICAL DEVELOPMENT (DCR-0024-01438.01.00/12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Rodrigo Zambrano Passarini.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary fiel1 (DOCX 15 KB)

203_2022_2860_MOESM2_ESM.jpg

Supp 2 PCA plot illustrating the influence of variables on the alpha-diversity of the different sampled points (JPG 32 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Passarini, M.R.Z., Ottoni, J.R., Costa, P.E.d. et al. Fungal community diversity of heavy metal contaminated soils revealed by metagenomics. Arch Microbiol 204, 255 (2022). https://doi.org/10.1007/s00203-022-02860-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-022-02860-7

Keywords

Navigation