Skip to main content
Log in

Microbacterium sulfonylureivorans sp. nov., isolated from sulfonylurea herbicides degrading consortium

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A novel Gram-stain positive, aerobic, motile, rod-shaped bacterium, designated strain LAM7116T was isolated from a sulfonylurea herbicides degrading consortium enriched with birch forest soil from Xinjiang. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that strain LAM7116T was closely related to the members of the genus Microbacterium, with the highest similarity to Microbacterium flavescens DSM 20643T (98.48%) and Microbacterium kitamiense Kitami C2T (98.48%). Strain LAM7116T formed a distinct subclade with M. flavescens DSM 20643T within the genus Microbacterium in the 16S rRNA gene phylogenetic trees. The genomic DNA G + C content of LAM7116T was 69.9 mol%. The digital DNA–DNA hybridization (dDDH) value between strain LAM7116T and M. flavescens DSM 20643T was 27.20%. The average nucleotide identity (ANI) value was 83.96% by comparing the draft genome sequences of strain LAM7116T and M. flavescens DSM 20643T. The major fatty acids were anteiso-C15:0, anteiso-C17:0, iso-C17:0, and iso-C16:0. The respiratory menaquinones of strain LAM7116T were MK-13 and MK-14. The main polar lipids were diphosphatidylglycerol, phosphatidylglycerol, an unidentified lipid, and an unidentified glycolipid. The peptidoglycan contained the amino acids glycine, lysine, alanine, and glutamic acid. Based on the phenotypic characteristics and genotypic analyses, we consider that strain LAM7116T represents a novel species, for which the name Microbacterium sulfonylureivorans sp. nov. was proposed. The type strain is LAM7116T (= CGMCC 1.16620T = JCM 32823T). Strain LAM7116T secreted auxin IAA and grew well in Ashby nitrogen-free culture medium. Genomic results showed that strain LAM7116T carried the nitrogenase iron protein (nifU and nifR3) gene, which indicated that strain LAM7116T has the potential to fix nitrogen and promote plant growth. At same time, strain LAM7116T can degrade nicosulfuron (a kind of sulfonylurea herbicides) using glucose as carbon source. Microbacterium sulfonylureivorans sp. nov. LAM7116T is a potential candidate for the biofertilizers of organic agriculture areas, and may possess potential to be used in bioremediation of nicosulfuron-contaminated environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA (2008) The RAST server: rapid annotations using subsystems technology. BMC Genom 9:75–75

    Article  Google Scholar 

  • Cai M, Wang L, Cai H, Li Y, Wang Y, Tang Y et al (2011) Salinarimonas ramus sp nov and Tessaracoccus oleiagri sp nov., isolated from a crude oil-contaminated saline soil. Int J Syst Evol Microbiol 61:1767–1774

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Cui X, Pukall R, Li H, Yang Y, Xu L et al (2007) Salinicoccus kunmingensis sp. nov., a moderately halophilic bacterium isolated from a salt mine in Yunnan, south-west China. Int J Syst Evol Microbiol 57:2327–2332

    Article  CAS  PubMed  Google Scholar 

  • Clermont D, Diard S, Bouchier C, Vivier C, Bimet F, Motreff L, Welker M, Kallow W, Bizet C (2009) Microbacterium binotii sp. nov., isolated from human blood. Int J Syst Evol Microbiol 59:1016–1022

    Article  CAS  PubMed  Google Scholar 

  • Collins M, Pirouz T, Goodfellow M, Minnikin D (1977) Distribution of menaquinones in Actinomycetes and Corynebacteria. J Gen Microbiol 100:221

    Article  CAS  PubMed  Google Scholar 

  • Collins MD, Jones D, Kroppenstedt RM (1983) Reclassification of Brevibacterium imperiale (Steinhaus) and “Corynebacterium laevaniformans” (Dias and Bhat) in a redefined genus Microbacterium (Orla-Jensen), as Microbacterium imperiale comb. nov. and Microbacterium laevaniformans nom. rev.; comb. nov. Syst Appl Microbiol 4:65–78

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61:793–799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goris J, Konstantinidis KT, Klappenbach JA, Coenye T (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa T, Takizawa M, Tanida S (1983) A rapid analysis for chemical grouping of aerobic Actinomycetes. J Gen Appl Microbiol 29:319–322

    Article  CAS  Google Scholar 

  • Kageyama A, Takahashi Y, Omura S (2006) Microbacterium deminutum sp. nov., Microbacterium pumilum sp. nov. and Microbacterium aoyamense sp. nov. Int J Syst Evol Microbiol 56:2113–2117

    Article  CAS  PubMed  Google Scholar 

  • Kageyama A, Takahashi Y, Matsuo Y, Kasai H, Shizuri Y, Omura S (2007) Microbacterium sediminicola sp. nov. and Microbacterium marinilacus sp. nov., isolated from marine environments. Int J Syst Evol Microbiol 57:2355–2359

    Article  CAS  PubMed  Google Scholar 

  • Kim KK, Park HY, Park W, Kim IS, Lee ST (2005) Microbacterium xylanilyticum sp. nov., a xylan-degrading bacterium isolated from a biofilm. Int J Syst Evol Microbiol 55:2075–2079

    Article  CAS  PubMed  Google Scholar 

  • Kim KK, Lee KC, Oh HM, Lee JS (2008) Microbacterium aquimaris sp. nov., isolated from seawater. Int J Syst Evol Microbiol 58:1616–1620

    Article  CAS  PubMed  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  • Komagata K, Suzuki K (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) Mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  • Lechevalier MP, Lechevalier HA (1980) The chemotaxonomy of actinomycetes. In: Dietz A, Thayer DW (eds) Actinomycete taxonomy special publication, vol 6. Society of Industrial Microbiology, Arlington, pp 227–291

    Google Scholar 

  • Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li M, Song JL, Ma QY, Kong DL, Zhou YQ, Jiang X, Zhang Q (2020) Insight into the characteristics and new mechanism of nicosulfuron biodegradation by a Pseudomonas sp. LAM1902. J Agric Food Chem 68:826–837

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Nakayama T, Hemmi H, Asano Y, Tsuruoka N, Shimomura K, Nishijima M, Nishino T (2005) Microbacterium natoriense sp. nov., a novel D-aminoacylase-producing bacterium isolated from soil in Natori Japan. Int J Syst Evol Microbiol 55:661–665

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Shi Y, Yuan J, Hu X, Zhang H, Li N et al (2013) Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects. Quant Biol 35:62–67

    Google Scholar 

  • Machuca A, Milagres A (2003) Use of CAS-agar plate modified to study the effect of different variables on the siderophore production by Aspergillus. J Appl Microbiol 3:177–181

    Article  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Lee J-S, Lee K-C, Saravanan VS, Santhanakrishnan P (2010) Microbacterium azadirachtae sp. nov., a plant-growth-promoting Actinobacterium isolated from the rhizoplane of neemseedlings. Int J Syst Evol Microbiol 60:1687–1692

    Article  CAS  PubMed  Google Scholar 

  • Matsuyama H, Kawasaki K, Yumoto I, Shida O (1999) Microbacterium kitamiense sp. nov., a new polysaccharide-producing bacterium isolated from the wastewater of a sugar-beet factory. Int J Syst Bacteriol 49:1353–1357

    Article  PubMed  Google Scholar 

  • Mawlankar RR, Mual P, Sonalkar VV, Thorat MN, Verma A, Srinivasan K, Dastager SG (2015) Microbacterium enclense sp. nov., isolated from sediment sample. Int J Syst Evol Microbiol 65:2064–2070

    Article  CAS  PubMed  Google Scholar 

  • Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60–60

    Article  Google Scholar 

  • Mikkel SB, Stinus L, Ludovic O (2016) AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res Notes 9:88

    Article  Google Scholar 

  • Minnikin DE, Patel PV, Alshamaony L, Goodfellow M (1977) Polar lipid composition in the classification of nocardia and related bacteria. Int J Syst Bacteriology 27:104–107

    Article  CAS  Google Scholar 

  • Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Miya M, Nishida M (2000) Use of mitogenomic information in teleostean molecular phylogenetics: a tree-based exploration under the maximum-parsimony optimality criterion. Mol Phylogenet Evol 17:437–455

    Article  CAS  PubMed  Google Scholar 

  • Moraine RA, Rogovin P (2010) Kinetics of polysaccharide B-1459. J Biosci Bioeng 8:511–524

    Google Scholar 

  • Murray R, Doetsch R, Robinow C (1994) Determinative and cytological light microscopy. American Society for Microbiology, Washington, pp 7–20

    Google Scholar 

  • Orla-Jensen S (1919) The lactic acid bacteria. Host and Sons, Copenhagen

    Google Scholar 

  • Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T et al (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:206

    Article  Google Scholar 

  • Pandey KK, Mayilraj S, Chakrabarti T (2002) Pseudomonas indica sp nov., a novel butane-utilizing species. Int J Syst Evol Microbiol 52:1559

    CAS  PubMed  Google Scholar 

  • Park HY, Kim KK, Jin L, Lee ST (2006) Microbacterium paludicola sp. nov., a novel xylanolytic bacterium isolated from swamp forest. Int J Syst Evol Microbiol 56:535–539

    Article  CAS  PubMed  Google Scholar 

  • Parks D, Imelfort M, Skennerton C, Hugenholtz P, Tyson G (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Robert EC (1999) Introduction: nature, occurrence and functioning of plant hormones. New Compreh Biochem 33:3–22

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. USFCC News 20:16

    Google Scholar 

  • Schippers A, Bosecker K, Sproer C, Schumann P (2005) Microbacterium oleivorans sp. nov. and Microbacterium hydrocarbonoxydans sp. nov., novel crude-oil-degrading Gram-positive bacteria. Int J Syst Evol Microbiol 55:655–660

    Article  CAS  PubMed  Google Scholar 

  • Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smibert RM, Krieg NR (1994) Phenotypic characterization. Methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 607–654

    Google Scholar 

  • Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155

    Google Scholar 

  • Takeuchi M, Hatano K (1998) Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al. in a redefined genus Microbacterium. Int J Syst Bacteriol 48:739–747

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ, Chen HH, Xu LH, Jiang CL (2005) Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 55:1149–1153

    Article  CAS  PubMed  Google Scholar 

  • Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (NSFC 32070004, 31670006). This work was also supported by Central Public interest Scientific Institution Basal Research Fund (No. Y2021GH18).

Author information

Authors and Affiliations

Authors

Contributions

QYM and DLK: study design; QZ and MML: conceived and supervised the study; DLK: analyzed the data; XYH: prepared the figures; QYM and YQZ: wrote the manuscript; ZYR and WZ: edited the manuscript and reviewed the literature; JC: manuscript revision. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Xu Jiang or Zhiyong Ruan.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 10879 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q., Kong, D., Zhang, Q. et al. Microbacterium sulfonylureivorans sp. nov., isolated from sulfonylurea herbicides degrading consortium. Arch Microbiol 204, 136 (2022). https://doi.org/10.1007/s00203-021-02750-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-021-02750-4

Keywords

Navigation