Skip to main content
Log in

Regulation of the inositol transporter Itr1p by hydrogen peroxide in Saccharomyces cerevisiae

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Myo-inositol is a precursor of several membrane phospholipids and sphingolipids and plays a key role in gene regulation in Saccharomyces cerevisiae (S. cerevisiae). Here, we tested whether H2O2 was affecting the levels of the inositol transporters and thus inositol uptake. In S. cerevisiae cells adapted to H2O2 Itr1–GFPp accumulated in the plasma membrane until 20 min, concomitantly with an inhibition of its internalization. Exposure to H2O2 did not alter Itr2–GFPp cellular levels and induced only an 8% decrease at 10 min in the plasma membrane. Therefore, decreased inositol intracellular levels are not caused by decreased levels of inositol transporters in the plasma membrane. However, results show that H2O2 adaptation affects Itr1p turnover and, consequently, H2O2-adapted yeast cells display an inositol transporter phenotype comparable to cells grown in the absence of inositol in growth medium, i.e. accumulation in the plasma membrane and decreased degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANOVA:

One-way analysis of variance

Art5p:

Arrestin-related trafficking adaptors

GFP–Opi1p:

Fusion between green fluorescence protein and Opi1 protein

H2O2 :

Hydrogen peroxide

INO1 :

Inositol-1-phosphate synthase gene

INO2 :

Ino2p gene

ITR1 :

Myo-inositol transporter 1 gene

Itr1–GFPp:

Fusion between Itr1 protein and green fluorescence protein

ITR2 :

Myo-inositol transporter 2 gene

Itr2–GFPp:

Fusion between Itr2 protein and green fluorescence protein

UASINO :

Inositol upstream activating sequence

Rsp5p:

E3 ubiquitin ligase that conjugates ubiquitin to proteins to target them for degradation

SC:

Synthetic complete medium

References

  • Ashizawa N, Yoshida M, Aotsuka T (2000) An enzymatic assay for myo-inositol in tissue samples. J Biochem Biophys Methods 44:89–94

    Article  CAS  Google Scholar 

  • Becuwe M, Leon S (2014) Integrated control of transporter endocytosis and recycling by the arrestin-related protein Rod1 and the ubiquitin ligase Rsp5. Elife 3:e03307

    Article  Google Scholar 

  • Berridge MJ, Irvine RF (1989) Inositol phosphates and cell signalling. Nature 341:197–205

    Article  CAS  Google Scholar 

  • Branco MR, Marinho HS, Cyrne L, Antunes F (2004) Decrease of H2O2 plasma membrane permeability during adaptation to H2O2 in Saccharomyces cerevisiae. J Biol Chem 279:6501–6506

    Article  CAS  Google Scholar 

  • Camelo C, Vilas-Boas F, Cepeda AP, Real C, Barros-Martins J, Pinto F, Soares H, Marinho HS, Cyrne L (2017) Opi1p translocation to the nucleus is regulated by hydrogen peroxide in Saccharomyces cerevisiae. Yeast 34:383–395

    Article  CAS  Google Scholar 

  • Carman GM, Han GS (2011) Regulation of phospholipid synthesis in the yeast Saccharomyces cerevisiae. Annu Rev Biochem 80:859–883

    Article  CAS  Google Scholar 

  • Carman GM, Henry SA (1999) Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes. Prog Lipid Res 38:361–399

    Article  CAS  Google Scholar 

  • Carman GM, Henry SA (2007) Phosphatidic acid plays a central role in the transcriptional regulation of glycerophospholipid synthesis in Saccharomyces cerevisiae. J Biol Chem 282:37293–37297

    Article  CAS  Google Scholar 

  • Chen M, Hancock LC, Lopes JM (2007) Transcriptional regulation of yeast phospholipid biosynthetic genes. Biochim Biophys Acta 1771:310–321

    Article  CAS  Google Scholar 

  • Cowart LA, Obeid LM (2007) Yeast sphingolipids: recent developments in understanding biosynthesis, regulation, and function. Biochim Biophys Acta 1771:421–431

    Article  CAS  Google Scholar 

  • Culbertson MR, Donahue TF, Henry SA (1976) Control of inositol biosynthesis in Saccharomyces cerevisiae: properties of a repressible enzyme system in extracts of wild-type (Ino+) cells. J Bacteriol 126:232–242

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dulic V, Egerton M, Elguindi I, Raths S, Singer B, Riezman H (1991) Yeast endocytosis assays. Methods Enzymol 194:697–710

    Article  CAS  Google Scholar 

  • Folmer V, Pedroso N, Matias AC, Lopes SCDN, Antunes F, Cyrne L, Marinho HS (2008) H2O2 induces rapid biophysical and permeability changes in the plasma membrane of Saccharomyces cerevisiae. Biochim Biophys Acta 1778:1141–1147

    Article  CAS  Google Scholar 

  • Gaspar ML, Aregullin MA, Jesch SA, Henry SA (2006) Inositol induces a profound alteration in the pattern and rate of synthesis and turnover of membrane lipids in Saccharomyces cerevisiae. J Biol Chem 281:22773–22785

    Article  CAS  Google Scholar 

  • Greenberg ML, Lopes JM (1996) Genetic regulation of phospholipid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev 60:1–20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grossmann G, Malinsky J, Stahlschmidt W, Loibl M, Weig-Meckl I, Frommer WB, Opekarova M, Tanner W (2008) Plasma membrane microdomains regulate turnover of transport proteins in yeast. J Cell Biol 183:1075–1088

    Article  CAS  Google Scholar 

  • Henry SA, Kohlwein SD, Carman GM (2012) Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae. Genetics 190:317–349

    Article  CAS  Google Scholar 

  • Hitchcock AL, Auld K, Gygi SP, Silver PA (2003) A subset of membrane-associated proteins is ubiquitinated in response to mutations in the endoplasmic reticulum degradation machinery. Proc Natl Acad Sci USA 100:12735–12740

    Article  CAS  Google Scholar 

  • Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691

    Article  CAS  Google Scholar 

  • Jesch SA, Zhao X, Wells MT, Henry SA (2005) Genome-wide analysis reveals inositol, not choline, as the major effector of Ino2p–Ino4p and unfolded protein response target gene expression in yeast. J Biol Chem 280:9106–9118

    Article  CAS  Google Scholar 

  • Kelley MJ, Bailis AM, Henry SA, Carman GM (1988) Regulation of phospholipid biosynthesis in Saccharomyces cerevisiae by inositol. Inositol is an inhibitor of phosphatidylserine synthase activity. J Biol Chem 263:18078–18085

    CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Lai K, McGraw P (1994) Dual control of inositol transport in Saccharomyces cerevisiae by irreversible inactivation of permease and regulation of permease synthesis by INO2, INO4, and OPI1. J Biol Chem 269:2245–2251

    CAS  PubMed  Google Scholar 

  • Lai K, Bolognese CP, Swift S, McGraw P (1995) Regulation of inositol transport in Saccharomyces cerevisiae involves inositol-induced changes in permease stability and endocytic degradation in the vacuole. J Biol Chem 270:2525–2534

    Article  CAS  Google Scholar 

  • Lin CH, MacGurn JA, Chu T, Stefan CJ, Emr SD (2008) Arrestin-related ubiquitin-ligase adaptors regulate endocytosis and protein turnover at the cell surface. Cell 135:714–725

    Article  CAS  Google Scholar 

  • Loewen CJ, Gaspar ML, Jesch SA, Delon C, Ktistakis NT, Henry SA, Levine TP (2004) Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid. Science 304:1644–1647

    Article  CAS  Google Scholar 

  • Marinho HS, Cyrne L, Cadenas E, Antunes F (2013) H2O2 delivery to cells: steady-state versus bolus addition. Methods Enzymol 526:159–173

    Article  CAS  Google Scholar 

  • Marinho HS, Real C, Cyrne L, Soares H, Antunes F (2014) Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol 2:535–562

    Article  CAS  Google Scholar 

  • Matias AC, Pedroso N, Teodoro N, Marinho HS, Antunes F, Nogueira JM, Herrero E, Cyrne L (2007) Down-regulation of fatty acid synthase increases the resistance of Saccharomyces cerevisiae cells to H2O2. Free Radic Biol Med 43:1458–1465

    Article  CAS  Google Scholar 

  • Miyashita M, Shugyo M, Nikawa J (2003) Mutational analysis and localization of the inositol transporters of Saccharomyces cerevisiae. J Biosci Bioeng 96:291–297

    Article  CAS  Google Scholar 

  • Nikawa J, Tsukagoshi Y, Yamashita S (1991) Isolation and characterization of two distinct myo-inositol transporter genes of Saccharomyces cerevisiae. J Biol Chem 266:11184–11191

    CAS  PubMed  Google Scholar 

  • Nikawa J, Hosaka K, Yamashita S (1993) Differential regulation of two myo-inositol transporter genes of Saccharomyces cerevisiae. Mol Microbiol 10:955–961

    Article  CAS  Google Scholar 

  • Nikko E, Pelham HR (2009) Arrestin-mediated endocytosis of yeast plasma membrane transporters. Traffic 10:1856–1867

    Article  CAS  Google Scholar 

  • Oliveira-Marques V, Silva T, Cunha F, Covas G, Marinho HS, Antunes F, Cyrne L (2013) A quantitative study of the cell-type specific modulation of c-Rel by hydrogen peroxide and TNF-alpha. Redox Biol 1:347–352

    Article  CAS  Google Scholar 

  • Paulick MG, Bertozzi CR (2008) The glycosylphosphatidylinositol anchor: a complex membrane-anchoring structure for proteins. Biochemistry 47:6991–7000

    Article  CAS  Google Scholar 

  • Pedroso N, Matias AC, Cyrne L, Antunes F, Borges C, Malhó R, de Almeida RF, Herrero E, Marinho HS (2009) Modulation of plasma membrane lipid profile and microdomains by H2O2 in Saccharomyces cerevisiae. Free Radic Biol Med 46:289–298

    Article  CAS  Google Scholar 

  • Pedroso N, Gomes-Alves P, Marinho HS, Brito VB, Boada C, Antunes F, Herrero E, Penque D, Cyrne L (2012) The plasma membrane-enriched fraction proteome response during adaptation to hydrogen peroxide in Saccharomyces cerevisiae. Free Radic Res 46:1267–1279

    Article  CAS  Google Scholar 

  • Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83:346–356

    Article  CAS  Google Scholar 

  • Polo S, Di Fiore PP (2008) Finding the right partner: science or ART? Cell 135:590–592

    Article  CAS  Google Scholar 

  • Robinson KS, Lai K, Cannon TA, McGraw P (1996) Inositol transport in Saccharomyces cerevisiae is regulated by transcriptional and degradative endocytic mechanisms during the growth cycle that are distinct from inositol-induced regulation. Mol Biol Cell 7:81–89

    Article  CAS  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  Google Scholar 

  • Schneider S (2015) Inositol transport proteins. FEBS Lett 589:1049–1058

    Article  CAS  Google Scholar 

  • Sousa-Lopes A, Antunes F, Cyrne L, Marinho HS (2004) Decreased cellular permeability to H2O2 protects Saccharomyces cerevisiae cells in stationary phase against oxidative stress. FEBS Lett 578:152–156

    Article  CAS  Google Scholar 

  • Strahl T, Thorner J (2007) Synthesis and function of membrane phosphoinositides in budding yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1771:353–404

    Article  CAS  Google Scholar 

  • Tsui MM, York JD (2010) Roles of inositol phosphates and inositol pyrophosphates in development, cell signaling and nuclear processes. Adv Enzyme Regul 50:324–337

    Article  Google Scholar 

  • Wiederkehr A, Avaro S, Prescianotto-Baschong C, Haguenauer-Tsapis R, Riezman H (2000) The F-box protein Rcy1p is involved in endocytic membrane traffic and recycling out of an early endosome in Saccharomyces cerevisiae. J Cell Biol 149:397–410

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. André Bastos for help in the endocytosis assays, Dr. Filipe Vilas-Boas for helpful discussions and critical reading of the manuscript and Dr. Helena Soares for help in the preparation of the figures. This work was supported by Fundação para a Ciência e a Tecnologia (FCT), Grant PEst-OE/QUI/UI0612/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa Cyrne.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Communicated by Olaf Kniemeyer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, T., Marinho, H.S. & Cyrne, L. Regulation of the inositol transporter Itr1p by hydrogen peroxide in Saccharomyces cerevisiae. Arch Microbiol 201, 123–134 (2019). https://doi.org/10.1007/s00203-018-1584-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-018-1584-1

Keywords

Navigation