Skip to main content

Advertisement

Log in

Root-associated bacterial diversities of Oryza rufipogon and Oryza sativa and their influencing environmental factors

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Oryza rufipogon is the ancestor of human-cultivated Oryza sativa. However, little is known about the difference between the root-associated microorganisms of O. rufipogon and O. sativa. In this study, the root-associated bacteria of O. rufipogon, Leersia hexandra, and O. sativa from different latitudes in China were studied by DGGE analysis. Their bacterial community structures were compared by principal component analysis. The relationship between root-associated bacteria and soil properties was explored by canonical correspondence analysis. The relationships of glomalin-related soil protein (GRSP) content, soluble sugar content, proline content of the plant, and bacterial diversity indices of their root-associated microorganisms were also investigated. We found both broad-spectrum and host-specific bacteria, and the similarity, diversity and abundance indices of O. rufipogon and L. hexandra were higher than O. sativa root-associated bacteria. However, even living in the same habitat, O. rufipogon and L. hexandra selected different root-associated bacteria. Microbial composition was primarily correlated with available N, P, and K and the annual precipitation. We also found a positive correlation between the soluble sugar content of the plant and GRSP content of the root soil. The above results indicated that the community structure of root-associated bacteria differs between wild rice and cultivated rice. Human activity and the natural selection of the host plants shaped the differences, consistent with our hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali S, Khaliq M, Shakoori A (1997) Use of ultra-violet spectrophotometry for determination of insecticides and aromatic hydrocarbon pollutants. Punjab Univ J Zool 12:31–34

    CAS  Google Scholar 

  • Anwar S, Liaquat F, Khan QM, Khalid ZM, Iqbal S (2009) Biodegradation of chlorpyrifos and its hydrolysis product 3, 5, 6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1. J Hazard Mater 168:400–405. doi:10.1016/j.jhazmat.2009.02.059

    Article  CAS  PubMed  Google Scholar 

  • Bedini S, Avio L, Argese E, Giovannetti M (2007) Effects of long-term land use on arbuscular mycorrhizal fungi and glomalin-related soil protein. Agric Ecosyst Environ 120:463–466. doi:10.1016/j.agee.2006.09.010

    Article  CAS  Google Scholar 

  • Cheng SH, Zhuang JY, Fan YY, Du JH, Cao LY (2007) Progress in research and development on hybrid rice: a super-domesticate in China. Ann Bot 100:959–966. doi:10.1093/aob/mcm121

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalmastri C, Chiarini L, Cantale C, Bevivino A, Tabacchioni S (1999) Soil type and maize cultivar affect the genetic diversity of maize root—associated Burkholderia cepacia populations. Microb Ecol 38:273–284. doi:10.1007/s002489900177

    Article  CAS  PubMed  Google Scholar 

  • Elbeltagy A, Sato T, Suzuki H, Ye B, Hamada T, Isawa T, Mitsui H, Minamisawa K (2001) Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microb 67:5285–5293. doi:10.1128/AEM.67.11.5285-5293.2001

    Article  CAS  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Nat Acad Sci USA 103:626–631. doi:10.1073/pnas.0507535103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao L, Zhang S, Zhou Y, Ge S, Hong D (1995) A survey of the current status of wild rice in China. Chin Biodivers 4:160–166

    Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471. doi:10.1016/j.tim.2008.07.008

    Article  CAS  PubMed  Google Scholar 

  • Heinrichs EA, Medrano FG (1984) Leersia hexandra, a weed host of the rice brown planthopper, Nilaparvata lugens (Stål). Crop Prot 3:77–85. doi:10.1016/0261-2194(84)90009-7

    Article  Google Scholar 

  • Kuklinsky-Sobral J, Araújo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251. doi:10.1111/j.1462-2920.2004.00658.x

    Article  CAS  PubMed  Google Scholar 

  • Li C, Salas W, DeAngelo B, Rose S (2006) Assessing alternatives for mitigating net greenhouse gas emissions and increasing yields from rice production in China over the next twenty years. J Environ Qual 35:1554–1565. doi:10.2134/jeq2005.0208

    Article  CAS  PubMed  Google Scholar 

  • Li X, He J, Li S (2007) Isolation of a chlorpyrifos-degrading bacterium, Sphingomonas sp. strain Dsp-2, and cloning of the mpd gene. Res Microbiol 158:143–149. doi:10.1016/j.resmic.2006.11.007

    Article  CAS  PubMed  Google Scholar 

  • Li J, Lin Q, Zhang X, Yan Y (2009) Kinetic parameters and mechanisms of the batch biosorption of Cr(VI) and Cr(III) onto Leersia hexandra Swartz biomass. J Colloid Interface Sci 333:71–77. doi:10.1016/j.jcis.2009.02.021

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Li Y, Ma L, Wei HC, Zhang JF, He XY, Tian CJ (2014) Coordinated regulation of arbuscular mycorrhizal fungi and soybean MAPK pathway genes improved mycorrhizal soybean drought tolerance. Mol Plant Microbe Int 28:1–12. doi:10.1094/MPMI-09-14-0251-R

    Google Scholar 

  • Liu Z, Li Y, Wang J, He XY, Tian CJ (2015) Different respiration metabolism between mycorrhizal and non-mycorrhizal rice under low-temperature stress: a cry for help from the host. J Agric Sci 153:1–13. doi:10.1017/S0021859614000434

    Google Scholar 

  • Londo JP, Chiang YC, Hung KH, Chiang TY, Schaal BA (2006) Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc Nat Acad Sci USA 103:9578–9583. doi:10.1073/pnas.0603152103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo H, Qi H, Zhang H (2004) Assessment of the bacterial diversity in fenvalerate-treated soil. World J Microbiol Biotechnol 20:509–515. doi:10.1023/B:WIBI.0000040401.46606.a4

    Article  CAS  Google Scholar 

  • Margalef R (1956) Información y diversidad específica en las comunidades de organismos. Inv Pesq 3:99–106

    Google Scholar 

  • Mohammadkhani N, Heidari R (2008) Drought-induced accumulation of soluble sugars and proline in two maize varieties. World Appl Sci J 3:448–453

    Google Scholar 

  • Rasmussen MA, Madsen SM, Stougaard P, Johnsen MG (2008) Flavobacterium sp. strain 4221 and Pedobacter sp. strain 4236 β-1, 3-glucanases that are active at low temperatures. Appl Environ Microbiol 74:7070–7072. doi:10.1128/AEM.00681-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shivaji S, Chaturvedi P, Reddy G, Suresh K (2005) Pedobacter himalayensis sp. nov., from the Hamta glacier located in the Himalayan mountain ranges of India. Int J Syst Evol Microbiol 55:1083–1088. doi:10.1099/ijs.0.63532-0

    Article  CAS  PubMed  Google Scholar 

  • Song ZP, Xu X, Wang B, Chen JK, Lu BR (2003) Genetic diversity in the northernmost Oryza rufipogon populations estimated by SSR markers. Theor Appl Genet 107:1492–1499. doi:10.1007/s00122-003-1380-3

    Article  CAS  PubMed  Google Scholar 

  • Su YY, Guo LD (2007) Arbuscular mycorrhizal fungi in non-grazed, restored and over-grazed grassland in the Inner Mongolia steppe. Mycorrhiza 17:689–693. doi:10.1007/s00572-007-0151-4

    Article  PubMed  Google Scholar 

  • Sun C, Wang X, Li Z, Yoshimura A, Iwata N (2001) Comparison of the genetic diversity of common wild rice (Oryza rufipogon Griff.) and cultivated rice (O. sativa L.) using RFLP markers. Theor Appl Genet 102:157–162. doi:10.1007/s001220051631

    Article  CAS  Google Scholar 

  • Tan L, Li XY, Liu FX, Sun XY, Li CG, Zhu ZF, Fu YC, Cai HW, Wang XK, Xie DX (2008) Control of a key transition from prostrate to erect growth in rice domestication. Nat Genet 40:1360–1364. doi:10.1038/ng.197

    Article  CAS  PubMed  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Wright S, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198:97–107. doi:10.1023/A:1004347701584

    Article  CAS  Google Scholar 

  • Yadav RL, Dwivedi BS, Prasad K, Tomar OK, Shurpali NJ, Pandey PS (2000) Yield trends, and changes in soil organic-C and available NPK in a long-term rice–wheat system under integrated use of manures and fertilisers. Field Crop Res 68:219–246. doi:10.1016/S0378-4290(00)00126-X

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful for the help from Dr. Jun Rong, Dr. Zhiping Song, and Dr. Yuanjing Li in collecting the samples. This work is financially supported by the Chinese Academic project B (XDB15030103), National Project (2016YFC0501202), the National Natural Science Foundation of China (41571255, 31370144), and the Natural Science Foundation of Jilin Province (20140101017JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunjie Tian.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1634 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, L., Zhou, X., Ma, L. et al. Root-associated bacterial diversities of Oryza rufipogon and Oryza sativa and their influencing environmental factors. Arch Microbiol 199, 563–571 (2017). https://doi.org/10.1007/s00203-016-1325-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-016-1325-2

Keywords

Navigation