Skip to main content
Log in

Genome-wide comparison and taxonomic relatedness of multiple Xylella fastidiosa strains reveal the occurrence of three subspecies and a new Xylella species

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A total of 21 Xylella fastidiosa strains were assessed by comparing their genomes to infer their taxonomic relationships. The whole-genome-based average nucleotide identity and tetranucleotide frequency correlation coefficient analyses were performed. In addition, a consensus tree based on comparisons of 956 core gene families, and a genome-wide phylogenetic tree and a Neighbor-net network were constructed with 820,088 nucleotides (i.e., approximately 30–33 % of the entire X. fastidiosa genome). All approaches revealed the occurrence of three well-demarcated genetic clusters that represent X. fastidiosa subspecies fastidiosa, multiplex and pauca, with the latter appeared to diverge. We suggest that the proposed but never formally described subspecies ‘sandyi’ and ‘morus’ are instead members of the subspecies fastidiosa. These analyses support the view that the Xylella strain isolated from Pyrus pyrifolia in Taiwan is likely to be a new species. A widely used multilocus sequence typing analysis yielded conflicting results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almeida RPP, Nunney L (2015) How do plant diseases caused by Xylella fastidiosa emerge ? Plant Dis 99:1457–1467. doi:10.1094/PDIS-02-15-0159-FE

    Article  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aziz RK, Bartels D, Best AA, De Jongh M, Disz T, Edwards RA, Formsma K, Gerdes L, Glass EM et al (2008) The RAST server: rapid annotation using subsystem technology. BMC Genom 9:75. doi:10.1371/journal.pone.0038596

    Article  Google Scholar 

  • Barbosa D, Alencar VC, Santos DS, De Freitas Oliveira AC, De Souza AA, Coletta-Filho HD, De Oliveira RS, Nunes LR (2015) Comparative genomic analysis of coffee-infecting Xylella fastidiosa strains isolated from Brazil. Microbiology 161:1018–1033. doi:10.1099/mic.0.000068

    Article  CAS  PubMed  Google Scholar 

  • Bull CT, De Boer SH, Denny TP, Firrao G, Fischer-Le Saux M, Saddler GS, Scortichini M, Stead DE, Takikawa Y (2010) Comprehensive list of names of plant pathogenic bacteria, 1980-2007. J Plant Pathol 92:551–592. doi:10.4454/jpp.v92i3.302

    Google Scholar 

  • Bull CT, De Boer SH, Denny TP, Firrao G, Fischer-Le Saux M, Saddler GS, Scortichini M, Stead DE, Takikawa Y (2012) List of new names of plant pathogenic bacteria (2008-2010). J Plant Pathol 94:21–27. doi:10.4454/jpp.fa.2011.003

    Google Scholar 

  • Cariddi C, Saponari Boscia D, De Stradis A, Loconsole G, Nigro F, Porcelli F, Potere O, Martelli GP (2014) Isolation of a Xylella fastidiosa strain infecting olive and oleander in Apulia, Italy. J Plant Pathol 96:1–5. doi:10.4454/JPP.V96I2.024

    Google Scholar 

  • Chen J, Su C-C, Deng W-L, Jan F-J, Chang C-J, Huang H (2014) Analyses of Xylella whole genome sequences and proposal of Xylella taiwanensis sp. nov. In: Proceedings of the 2014 Pierce’s disease research Symposium, December 15–17, 2014, Sacramento, CA, USA

  • Christensen H, Kuhnert P, Busse H-J, Frederiksen WC, Bisgaard M (2007) Proposed minimal standards for the description of genera, species and subspecies of the Pasteurellaceae. Int J Syst Evol Microbiol 57:166–178. doi:10.1099/ijs.0.64838-0

    Article  CAS  PubMed  Google Scholar 

  • Chun J, Rainey FA (2014) Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol 64:316–324. doi:10.1099/ijs.0.054171-0

    Article  PubMed  Google Scholar 

  • Coletta-Filho HD, Francisco CS, Lopes JRS, De Oliveira AF, Da Silva LFO (2016) First report of olive leaf scorch in Brazil, associated with Xylella fastidiosa subsp. pauca. Phytopathol Medit. doi:10.14601/Phytopathol_Mediterr-17259

    Google Scholar 

  • Da Silva VS, Shida CS, Rodrigues FB, Ribeiro DCD, De Souza AA, Coletta-Filho ED, Machado MA, Nunes LR et al (2007) Comparative genomic characterization of citrus-associated Xylella fastidiosa strains. BMC Genom 8:474. doi:10.1186/1471-2164-8-474

    Article  Google Scholar 

  • De Mello Varani A, Souza RC, Nakaya HI, De Lima WC, De Almeida LGP, Kitajima EW, Chen J, Civerolo E, Vasconcelos ATR et al (2008) Origins of the Xylella fastidiosa prophage-like regions and their impact in genome differentiation. PLoS One 3:e4059. doi:10.1371/journal.pone.0004059

    Article  PubMed  PubMed Central  Google Scholar 

  • Digiaro M, Valentini F (2015) The presence of Xylella fastidiosa in Apulia region (Southern Italy) poses a serious threat to the whole Euro-Mediterranean region. Centre International de Hautes Etudes Agronomiques Méditerranéennes Watch Letter, no 33

  • EFSA Panel on Plant Health (2015) Scientific opinion on the risks to plant health posed by Xylella fastidiosa in the EU territory, with the identification and evaluation of risk reduction options. EFSA J 13:3989

    Article  Google Scholar 

  • European Plant Protection Organization (2004) Diagnostic protocol for regulated pests. Xylella fastidiosa. Bull OEPP/Eppo Bull 24:187–192. doi:10.1111/j.1365-2338.2004.00718.x

    Google Scholar 

  • European Plant Protection Organization (2015) Xylella fastidiosa detected in Alpes-Maritimes, mainland France. Reporting Service no 10, 180

  • Giampetruzzi A, Chiumenti M, Saponari M, Donvito G, Italiano A, Loconsole G, Boscia D, Cariddi C, Martelli GP et al (2015) Draft genome sequence of the Xylella fastidiosa CoDiRO strain. Genome Announc 3:e01538-14. doi:10.1128/genomeA.01538-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA–DNA hybridization values and their relation to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91. doi:10.1099/ijs.0.64483-0

    Article  CAS  PubMed  Google Scholar 

  • Guan W, Shao J, Elbeaino T, Davis RE, Zhao T, Huang Q (2015) Specific detection and identification of American mulberry-infecting and Italian olive-associated strains of Xylella fastidiosa by polymerase chain reaction. PLoS One 10:e0129330. doi:10.1371/journal.pone.0129330

    Article  PubMed  PubMed Central  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704. doi:10.1080/10635150390235520

    Article  PubMed  Google Scholar 

  • Haelterman RM, Tolocka PA, Roca ME, Guzman FA, Fernandez FD, Otero ML (2015) First presumptive diagnosis of Xylella fastidiosa causing olive scorch in Argentina. J Plant Pathol 97:393. doi:10.4454/JPP.V97I2.023

    Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267. doi:10.1093/molbev/msj030

    Article  CAS  PubMed  Google Scholar 

  • Jacques M-A, Denancé N, Legendre B, Morel E, Briand M, Mississipi S, Durand K, Olivier V, Portier P et al (2015) New variants of coffee-infecting Xylella fastidiosa issued from homologous recombination. Appl Environ Microbiol. doi:10.1128/AEM.03299-15

    Google Scholar 

  • Kim M, Oh H-S, Park S-C, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351. doi:10.1099/ijs.0.059774-0

    Article  CAS  PubMed  Google Scholar 

  • Konstantinidis KT, Tiedje JM (2005) Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 102:2567–2572. doi:10.1073/pnas.0409727102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kung SH, Almeida RPP (2011) Natural competence and recombination in the plant pathogen Xylella fastidiosa. Appl Environ Microbiol 77:5278–5524. doi:10.1128/AEM.00730-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapage SP, Sneath PHA, Lessel EF, Skerman VBD, Seeliger HPR, Clark VA (1992) International code of nomenclature of bacteria 1990. Revision bacteriological code. American Society for Microbiology, Washington

    Google Scholar 

  • Lerat E, Daubin V, Moran NA (2003) From gene trees to organismal phylogeny in Prokaryotes: the case of the γ–Proteobacteria. PLoS Biol 1:e19. doi:10.1371/journal.pbio.0000019

    Article  PubMed  PubMed Central  Google Scholar 

  • Leu LS, Su CC (1993) Isolation, cultivation and pathogenicity of Xylella fastidiosa, the causal bacterium of pear leaf scorch disease in Taiwan. Plant Dis 77:642–646

    Article  Google Scholar 

  • Loconsole G, Potere O, Boscia D, Altamura G, Djelouah K, Elbeaino T, Frasheri D, Lorusso D, Palmisano F et al (2014) Detection of Xylella fastidiosa in olive trees by molecular and serological methods. J Plant Pathol 96:7–14. doi:10.4454/JPP.V96I1.041

    CAS  Google Scholar 

  • Maiden MCJ, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K et al (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA 95:3140–3145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcelletti S, Scortichini M (2014) Definition of plant-pathogenic Pseudomonas genomospecies of the P. syringae complex through multiple comparative approaches. Phytopathology 104:1274–1282. doi:10.1094/PHYTO-12-13-0344-R

    Article  PubMed  Google Scholar 

  • Marcelletti S, Scortichini M (2015) Comparative genomic analyses of multiple Pseudomonas strains infecting Corylus avellana trees reveal the occurrence of two genetic clusters with both common and distinctive virulence and fitness traits. PLoS One 10:e0131112. doi:10.1371/journal.pone.0131112

    Article  PubMed  PubMed Central  Google Scholar 

  • Nunney LR, Yuan X, Bromley RE, Stouthamer R (2012) Detecting genetic introgression: high levels of intersubspecific recombination found in Xylella fastidiosa in Brazil. Appl Environ Microbiol 78:4702–4714. doi:10.1128/AEM.01126-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunney LR, Schuenzel EL, Scally M, Bromley RE, Stouthamer R (2014) Large-scale intersubspecific recombination in the plant-pathogenic bacterium Xylella fastidiosa is associated with the host shift to mulberry. Appl Environ Microbiol 80:3025–3033. doi:10.1128/AEM.04112-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290. doi:10.1093/bioinformatics/btg412

    Article  CAS  PubMed  Google Scholar 

  • Poptsova MS, Gogarten JP (2007) BranchClust: a phylogenetic algorithm for selecting gene families. BMC Bioinform 8:120. doi:10.1186/1471-2105-8-120

    Article  Google Scholar 

  • Purcell AH (2008) Transmission of Xylella fastidiosa bacteria by xylem-feeding insects. In: Capinera JL (ed) Encyclopedia of entomology. Springer, Dordrecht, pp 3885–3886

    Google Scholar 

  • Ramasamy D, Mishra AK, Lagier JC, Padhmanabhan R, Rossi M, Sentausa E, Raoult D, Fournier PE (2014) A polyphasic strategy incorporating genomic data for the taxonomic description of novel bacterial species. Int J Syst Evol Microbiol 64:384–391. doi:10.1099/ijs.0.057091-0

    Article  PubMed  Google Scholar 

  • Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131. doi:10.1073/pnas.0906412106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-R LM, Grajales A, Arrieta-Ortiz ML, Salazar C, Restrepo S, Bernal A (2012) Genome-based phylogeny of the genus Xanthomonas. BMC Microbiol 12:43. doi:10.1186/1471-2180-12-43

    Article  PubMed  PubMed Central  Google Scholar 

  • Scally M, Schuenzel EL, Stouthamer R, Nunney L (2005) Multilocus sequence type system for the plant pathogen Xylella fastidiosa and relative contribution of recombination and point mutation to clonal diversity. Appl Environ Microbiol 71:8491–8499. doi:10.1128/AEM.71.12.8491-8499.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaad NW, Postnikova E, Lacy G, Fatmi M, Chang CJ (2004a) Xylella fastidiosa subspecies: X. fastidiosa subsp. piercei, subsp. nov., X. fastidiosa subsp. multiplex subsp. nov., and X. fastidiosa subsp. pauca subsp. nov. Syst Appl Microbiol 27:290–300. doi:10.1078/0723-2020/04/2369-848

    Article  CAS  PubMed  Google Scholar 

  • Schaad NW, Postnikova E, Lacy G, Fatmi M, Chang CJ (2004b) Xylella fastidiosa subspecies: X. fastidiosa subsp. piercei, subsp. nov., X. fastidiosa subsp. multiplex subsp. nov., and X. fastidiosa subsp. pauca subsp. nov. Erratum Syst Appl Microbiol 27:763. doi:10.1078/0723-2020/04/27/06-763

    Article  Google Scholar 

  • Scortichini M, Marcelletti S, Ferrante P, Firrao G (2013) A genomic redefinition of Pseudomonas avellanae species. PLoS One 8:e75794. doi:10.1371/journal.pone.0075794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staley JT, Krieg NR (1984) Classification of prokaryotic organisms: an overview. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1. Williams & Wilkins, Baltimore, pp 1–7

    Google Scholar 

  • Su C-C, Deng W-L, Jan F-J, Chang C-J, Huang H, Chen J (2014) Draft genome sequence of Xylella fastidiosa pear leaf scorch strain in Taiwan. Genome Announc 2:e00166-14. doi:10.1128/genomeA.00166-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E, Thompson FL (2013) Microbial genomic taxonomy. BMC Genom 14:913. doi:10.1186/1471-2164-14-913

    Article  Google Scholar 

  • Wall DP, Fraser HB, Hirsch AE (2003) Detecting putative orthologs. Bioinform Appl Note 19:1710–1711. doi:10.1093/bioinformatics/btg213

    Article  CAS  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevski MI, Moore LH, Moore WEC, Murray RGE et al (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematic. Int J Syst Bacteriol 37:463–464. doi:10.1099/00207713-37-4-463

    Article  Google Scholar 

  • Wells JM, Raju BC, Hung H-Y, Weisburg WG, Mandelco-Paul L, Beemer DJ (1987) Xylella fastidiosa gen. nov., sp. nov.: gram-negative, xylem-limited, fastidious plant bacteria related to Xanthomonas spp. Int J Syst Bacteriol 37:136–143. doi:10.1099/00207713-37-2-136

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was financed by the ordinary funds of the Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Scortichini.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Whole-genome-based average nucleotide identity (ANI) values regarding 20 Xylella fastidiosa strains, the diverging PLS 229 and the outgroup Xanthomonas oryzae pv. oryzae KACC 10331. The strains of subspecies pauca showed ANI values ranging from 95 to 96 % (XLS 25 kb)

Table S2

Tetranucleotide frequency correlation coefficients (TETRA) values of 20 Xylella fastidiosa strains, the diverging PLS 229 and the outgroup Xanthomonas oryzae pv. oryzae KACC 10331 (DOC 86 kb)

Supplementary Figure S1

Phylogenetic relationships among 21 strains of Xylella fastidiosa as obtained with multilocus sequence typing (MLST) analysis using 6.021 concatenated nucleotides of seven housekeeping genes (gltT, holC, lacF, leuA, nuoL, petC, rfbD) with bootstrap values shown at the nodes. The scale bar indicates the number of substitution per nucleotide position. Strain legend is shown in Table 1. Xanthomonas oryzae pv. oryzae KACC 10331 was included as outgroup (TIFF 3938 kb)

Supplementary Figure S2

Recombination network among 20 Xylella fastidiosa strains built using gltT gene. The scale bar indicates the number of substitution per nucleotide position. Strain legend is shown in Table 1. Xanthomonas oryzae pv. oryzae KACC 10331 included as outgroup and the strain PLS 229 resulted divergent from the genuine X. fastidiosa strains and are not shown. (PDF 16 kb)

Supplementary Figure S3

Recombination network among 20 Xylella fastidiosa strains built using holC gene. The scale bar indicates the number of substitution per nucleotide position. Strain legend is shown in Table 1. Xanthomonas oryzae pv. oryzae KACC 10331 included as outgroup and the strain PLS 229 resulted divergent from the genuine X. fastidiosa strains and are not shown (PDF 23 kb)

Supplementary Figure S4

Recombination network among 20 Xylella fastidiosa strains built using lacF gene. The scale bar indicates the number of substitution per nucleotide position. Strain legend is shown in Table 1. Xanthomonas oryzae pv. oryzae KACC 10331 included as outgroup and the strain PLS 229 resulted divergent from the genuine X. fastidiosa strains and are not shown (PDF 22 kb)

Supplementary Figure S5

Recombination network among 20 Xylella fastidiosa strains built using leuA gene. The scale bar indicates the number of substitution per nucleotide position. Strain legend is shown in Table 1. Xanthomonas oryzae pv. oryzae KACC 10331 included as outgroup and the strain PLS 229 resulted divergent from the genuine X. fastidiosa strains and are not shown (PDF 20 kb)

Supplementary Figure S6

Recombination network among 20 Xylella fastidiosa strains built using nuoL gene. The scale bar indicates the number of substitution per nucleotide position. Strain legend is shown in Table 1. Xanthomonas oryzae pv. oryzae KACC 10331 included as outgroup and the strain PLS 229 resulted divergent from the genuine X. fastidiosa strains and are not shown. (PDF 42 kb)

Supplementary Figure S7

Recombination network among 20 Xylella fastidiosa strains built using petC gene. The scale bar indicates the number of substitution per nucleotide position. Strain legend is shown in Table 1. Xanthomonas oryzae pv. oryzae KACC 10331 included as outgroup and the strain PLS 229 resulted divergent from the genuine X. fastidiosa strains and are not shown (PDF 16 kb)

Supplementary Figure S8

Recombination network among 20 Xylella fastidiosa strains built using rfbD gene. The scale bar indicates the number of substitution per nucleotide position. Strain legend is shown in Table 1. Xanthomonas oryzae pv. oryzae KACC 10331 included as outgroup and the strain PLS 229 resulted divergent from the genuine X. fastidiosa strains and are not shown (PDF 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcelletti, S., Scortichini, M. Genome-wide comparison and taxonomic relatedness of multiple Xylella fastidiosa strains reveal the occurrence of three subspecies and a new Xylella species. Arch Microbiol 198, 803–812 (2016). https://doi.org/10.1007/s00203-016-1245-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-016-1245-1

Keywords

Navigation