Skip to main content
Log in

The exo-proteome and exo-metabolome of Nostoc punctiforme (Cyanobacteria) in the presence and absence of nitrate

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The ability of nitrogen-fixing filamentous Cyanobacteria to adapt to multiple environments comes in part from assessing and responding to external stimuli, an event that is initiated in the extracellular milieu. While it is known that these organisms produce numerous extracellular substances, little work has been done to characterize both the metabolites and proteins present under standard laboratory growth conditions. We have assessed the extracellular milieu of Nostoc punctiforme when grown in liquid culture in the presence and absence of a nitrogen source (nitrate). The extracellular proteins identified were enriched in integrin β-propellor domains and calcium-binding sites with sequences unique to N. punctiforme, supporting a role for extracellular proteins in modulating species-specific recognition and behavior processes. Extracellular proteases are present and active under both conditions, with the cells grown with nitrate having a higher activity when normalized to chlorophyll levels. The released metabolites are enriched in peptidoglycan-derived tetrasaccharides, with higher levels in nitrate-free media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson DC, Campbell EL, Meeks JC (2006) A soluble 3D LC/MS/MS proteome of the filamentous cyanobacterium Nostoc punctiforme. J Proteome Res 5(11). doi:10.1021/pr060272m

  • Baran R, Bowen BP, Bouskill NJ, Brodie EL, Yannone SM, Northen TR (2010) Metabolite identification in Synechococcus sp. PCC 7002 using untargeted stable isotope assisted metabolite profiling. Anal Chem 82(21):9034–9042. doi:10.1021/ac1020112

    Article  CAS  PubMed  Google Scholar 

  • Baran R, Bowen BP, Northen TR (2011) Untargeted metabolic footprinting reveals a surprising breadth of metabolite uptake and release by Synechococcus sp. PCC 7002. Mol Biosys 7(12):3200–3206. doi:10.1039/c1mb05196b

    Article  CAS  Google Scholar 

  • Berendt S, Lehner J, Zhang YV, Rasse TM, Forchhammer K, Maldener I (2012) Cell wall amidase AmiC1 is required for cellular communication and heterocyst development in the cyanobacterium Anabaena PCC 7120 but not for filament integrity. J Bacteriol 194(19):5218–5227. doi:10.1128/jb.00912-12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bohm GA, Pfleiderer W, Boger P, Scherer S (1995) Structure of a novel oligosaccharide-mycosporine-amino acid ultraviolet A/B sunscreen pigment from the terrestrial Cyanobacterium Nostoc commune. J Biol Chem 270(15):8536–8539

    Article  CAS  PubMed  Google Scholar 

  • Boudreau MA, Fisher JF, Mobashery S (2012) Messenger functions of the bacterial cell wall-derived muropeptides. Biochemistry 51(14):2974–2990. doi:10.1021/bi300174x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Du Y, Wang F, May K, Xu W, Liu H (2012) Determination of deamidation artifacts introduced by sample preparation using 18O-labeling and tandem mass spectrometry analysis. Anal Chem 84(15):6355–6360. doi:10.1021/ac3013362

    Article  CAS  PubMed  Google Scholar 

  • Ehling-Schulz M, Bilger W, Scherer S (1997) UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J Bacteriol 179(6):1940–1945

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ehling-Schulz M, Schulz S, Wait R, Gorg A, Scherer S (2002) The UV-B stimulon of the terrestrial cyanobacterium Nostoc commune comprises early shock proteins and late acclimation proteins. Mol Microbiol 46(3):827–843

    Article  CAS  PubMed  Google Scholar 

  • Geiger T, Clarke S (1987) Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. J Biol Chem 262(2):785–794

    CAS  PubMed  Google Scholar 

  • Helm RF, Potts M (2012) Extracellular matrix (ECM). In: Whitton BA (ed) Ecology of Cyanobacteria II, their diversity in space and time. Springer, Dordrecht, pp 461–480

    Chapter  Google Scholar 

  • Herdman M, Rippka R (1988) Cellular differentiation: Hormogonia and baeocytes. In: Packer L, Glazer AN (eds) Methods in enzymology, vol 167. Academic Press, San Diego, pp 232–242

    Google Scholar 

  • Hoiczyk E, Hansel A (2000) Cyanobacterial cell walls: news from an unusual prokaryotic envelope. J Bacteriol 182(5):1191–1199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hunsucker SW, Klage K, Slaughter SM, Potts M, Helm RF (2004) A preliminary investigation of the Nostoc punctiforme proteome. Biochem Biophys Res Commun 317(4):1121–1127. doi:10.1016/j.bbrc.2004.03.173

    Article  CAS  PubMed  Google Scholar 

  • Jurgens UJ, Weckesser J (1986) Polysaccharide covalently linked to the peptidoglycan of the Cyanobacterium Synechocystic sp. strain PCC6714. J Bacteriol 168(2):568–573

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jurgens UJ, Drews G, Weckesser J (1983) Primary structure of the peptidoglycan from the unicellular cyanobacterium Synechocystis sp. strain PCC 6714. J Bacteriol 154:471–478

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jurgens UJ, Martin C, Weckesser J (1989) Cell wall constituents of Microcystis sp. PCC 7806. FEMS Microbiol Lett 53:47–51

    Article  CAS  PubMed  Google Scholar 

  • Kaplan-Levy RN, Hadas O, Summers ML, Rucker J, Sukenik A (2010) Akinetes: Dormant cells of cyanobacteria. In: Lubzens E, Cerda J, Clark M (eds) Dormancy and resistance in harsh environments, vol 21. Topics in current genetics. Springer, Berlin, pp 5–27. doi:10.1007/978-3-642-12422-8_2

  • Kodani S, Ishida K, Murakami M (1999) Occurrence and identification of UDP-N-acetylmuramyl-pentapeptide from the cyanobacterium Anabaena cylindrica. FEMS Microbiol Lett 176(2):321–325

    Article  CAS  PubMed  Google Scholar 

  • Koskiniemi S, Lamoureux JG, Nikolakakis KC, de Roodenbeke CTK, Kaplan MD, Low DA, Hayes CS (2013) Rhs proteins from diverse bacteria mediate intercellular competition. Proc Natl Acad Sci USA 110(17):7032–7037. doi:10.1073/pnas.1300627110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krokhin OV, Antonovici M, Ens W, Wilkins JA, Standing KG (2006) Deamidation of -Asn-Gly- sequences during sample preparation for proteomics: consequences for MALDI and HPLC-MALDI analysis. Anal Chem 78(18):6645–6650. doi:10.1021/ac061017o

    Article  CAS  PubMed  Google Scholar 

  • Kumar K, Mella-Herrera RA, Golden JW (2010) Cyanobacterial heterocysts. Cold Spring Harb Perspect Biol 2(4):19. doi:10.1101/cshperspect.a000315

    Article  Google Scholar 

  • Leao PN, Engene N, Antunes A, Gerwick WH, Vasconcelos V (2012) The chemical ecology of cyanobacteria. Nat Prod Rep 29(3):372–391. doi:10.1039/c2np00075j

    Article  CAS  PubMed  Google Scholar 

  • Lehner J, Zhang Y, Berendt S, Rasse TM, Forchhammer K, Maldener I (2011) The morphogene AmiC2 is pivotal for multicellular development in the cyanobacterium Nostoc punctiforme. Mol Microbiol 79(6):1655–1669. doi:10.1111/j.1365-2958.2011.07554.x

    Article  CAS  PubMed  Google Scholar 

  • Lehner J, Berendt S, Dorsam B, Perez R, Forchhammer K, Maldener I (2013) Prokaryotic multicellularity: a nanopore array for bacterial cell communication. Faseb J 27(6):2293–2300. doi:10.1096/Fj.12-225854

    Article  CAS  PubMed  Google Scholar 

  • Liaimer A, Jenke-Kodama H, Ishida K, Hinrichs K, Stangeland J, Hertweck C, Dittmann E (2011) A polyketide interferes with cellular differentiation in the symbiotic cyanobacterium Nostoc punctiforme. Environ Microbiol Rep 3(5):550–558. doi:10.1111/j.1758-2229.2011.00258.x

    Article  CAS  PubMed  Google Scholar 

  • Linhartova I, Bumba L, Masin J, Basler M, Osicka R, Kamanova J, Prochazkova K, Adkins I, Hejnova-Holubova J, Sadilkova L, Morova J, Sebo P (2010) RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol Rev 34(6):1076–1112. doi:10.1111/j.1574-6976.2010.00231.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu H, Wang F, Xu W, May K, Richardson D (2013) Quantitation of asparagine deamidation by isotope labeling and liquid chromatography coupled with mass spectrometry analysis. Anal Biochem 432(1):16–22. doi:10.1016/j.ab.2012.09.024

    Article  CAS  PubMed  Google Scholar 

  • Mary I, Garczarek L, Tarran GA, Kolowrat C, Terry MJ, Scanlan DJ, Burkill PH, Zubkov MV (2008) Diel rhythmicity in amino acid uptake by Prochlorococcus. Environ Microbiol 10(8):2124–2131. doi:10.1111/j.1462-2920.2008.01633.x

    Article  CAS  PubMed  Google Scholar 

  • Meeks JC, Elhai J (2002) Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiol Mol Biol Rev 66(1):94–121. doi:10.1128/mmbr.66.1.94-121.2002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meeks JC, Elhai J, Thiel T, Potts M, Larimer F, Lamerdin J, Predki P, Atlas R (2001) An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosynth Res 70(1):85–106. doi:10.1023/a:1013840025518

    Article  CAS  PubMed  Google Scholar 

  • Mikkat S, Effmert U, Hagemann M (1997) Uptake and use of the osmoprotective compounds trehalose, glucosylglycerol, and sucrose by the cyanobacterium Synechocystis sp. PCC6803. Arch Microbiol 167(2–3):112–118. doi:10.1007/s002030050423

    Article  CAS  Google Scholar 

  • Mikkat S, Kischstein T, Kreutzer M, Glocker MO (2013) Mass spectrometric peptide analysis of 2DE-separated mouse spinal cord and rat hippocampus proteins suggests an NGxG motif of importance for in vivo deamidation. Electrophoresis 34(11):1610–1618. doi:10.1002/elps.201200682

    Article  CAS  PubMed  Google Scholar 

  • Morsy FM, Kuzuha S, Takani Y, Sakamoto T (2008) Novel thermostable glycosidases in the extracellular matrix of the terrestrial cyanobacterium Nostoc commune. J Gen Appl Microbiol 54(5):243–252

    Article  CAS  PubMed  Google Scholar 

  • Nicolalsen K, Hahn A, Schleiff E (2009) The cell wall in heterocyst formation by Anabaena sp PCC 7120. J Basic Microbiol 49(1):5–24. doi:10.1002/jobm.200800300

    Article  Google Scholar 

  • Otero A, Vincenzini M (2004) Nostoc (Cyanophyceae) goes nude: extracellular polysaccharides serve as a sink for reducing power under unbalanced C/N metabolism. J Phycol 40(1):74–81. doi:10.1046/j.1529-8817.2004.03067.x

    Article  CAS  Google Scholar 

  • Ow SY, Noirel J, Cardona T, Taton A, Lindblad P, Stensjo K, Wright PC (2009) Quantitative overview of N2 fixation in Nostoc punctiforme ATCC 29133 through cellular enrichments and iTRAQ shotgun proteomics. J Proteome Res 8(1):187–198. doi:10.1021/pr800285v

    Article  CAS  PubMed  Google Scholar 

  • Pereira S, Zille A, Micheletti E, Moradas-Ferreira P, De Philippis R, Tamagnini P (2009) Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev 33(5):917–941. doi:10.1111/j.1574-6976.2009.00183.x

    Article  CAS  PubMed  Google Scholar 

  • Prasanna R, Nain L, Tripathi R, Gupta V, Chaudhary V, Middha S, Joshi M, Ancha R, Kaushik BD (2008) Evaluation of fungicidal activity of extracellular filtrates of cyanobacteria—possible role of hydrolytic enzymes. J Basic Microbiol 48(3):186–194. doi:10.1002/jobm.200700199

    Article  CAS  PubMed  Google Scholar 

  • Read N, Connell S, Adams DG (2007) Nanoscale visualization of a fibrillar array in the cell wall of filamentous cyanobacteria and its implications for gliding motility. J Bacteriol 189:7361–7366. doi:10.1128/jb.00706-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of the pure cultures of Cyanobacteria. J Gen Microbiol 111(Mar):1–61

    Google Scholar 

  • Risser DD, Meeks JC (2013) Comparative transcriptomics with a motility-deficient mutant leads to identification of a novel polysaccharide secretion system in Nostoc punctiforme. Mol Microbiol 87(4):884–893. doi:10.1111/mmi.12138

    Article  CAS  PubMed  Google Scholar 

  • Robinson NE, Robinson AB (2004) Molecular clocks: Deamidation of asparaginyl and glutaminyl residues in peptides and proteins. Althouse Press, Cave Junction

    Google Scholar 

  • Sakamoto T, Kumihashi K, Kunita S, Masaura T, Inoue-Sakamoto K, Yamaguchi M (2011) The extracellular-matrix-retaining cyanobacterium Nostoc verrucosum accumulates trehalose, but is sensitive to desiccation. FEMS Microbiol Ecol 77(2):385–394. doi:10.1111/j.1574-6941.2011.01114.x

    Article  CAS  PubMed  Google Scholar 

  • Schirrmeister BE, Antonelli A, Bagheri HC (2011) The origin of multicellularity in cyanobacteria. BMC Evol Biol 11. doi:10.1186/1471-2148-11-45

  • Schirrmeister BE, de Vos JM, Antonelli A, Bagheri HC (2013) Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. Proc Natl Acad Sci USA 110(5):1791–1796. doi:10.1073/pnas.1209927110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shi T, Falkowski PG (2008) Genome evolution in cyanobacteria: the stable core and the variable shell. Proc Natl Acad Sci USA 105(7):2510–2515. doi:10.1073/pnas.0711165105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shih PM, Wu D, Latifi A, Axen SD, Fewer DP, Talla E, Calteau A, Cai F, de Marsac NT, Rippka R, Herdman M, Sivonen K, Coursin T, Laurent T, Goodwin L, Nolan M, Davenport KW, Han CS, Rubin EM, Eisen JA, Woyke T, Gugger M, Kerfeld CA (2013) Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc Natl Acad Sci USA 110(3):1053–1058. doi:10.1073/pnas.1217107110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shirkey B, Kovarcik DP, Wright DJ, Wilmoth G, Prickett TF, Helm RF, Gregory EM, Potts M (2000) Active Fe-containing superoxide dismutase and abundant sodF mRNA in Nostoc commune (Cyanobacteria) after years of desiccation. J Bacteriol 182(1):189–197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Springer TA (1997) Folding of the N-terminal, ligand-binding region of integrin alpha-subunits into a beta-propeller domain. Proc Natl Acad Sci USA 94(1):65–72

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sutcliffe IC (2010) A phylum level perspective on bacterial cell envelope architecture. Trends Microbiol 18(10):464–470. doi:10.1016/j.tim.2010.06.005

    Article  CAS  PubMed  Google Scholar 

  • Trautner C, Vermaas WF (2013) The sll1951 gene encodes the surface layer protein of Synechocystis sp. strain PCC 6803. J Bacteriol 195(23):5370–5380. doi:10.1128/JB.00615-13

    Article  CAS  PubMed  Google Scholar 

  • Typas A, Banzhaf M, Gross CA, Vollmer W (2012) From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Microbiol 10(2):123–136. doi:10.1038/nrmicro2677

    CAS  Google Scholar 

  • Wright DJ, Smith SC, Joardar V, Scherer S, Jervis J, Warren A, Helm RF, Potts M (2005) UV irradiation and desiccation modulate the three-dimensional extracellular matrix of Nostoc commune (Cyanobacteria). J Biol Chem 280(48):40271–40281. doi:10.1074/jbc.M505961200

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki Y, Shikata T, Nukata A, Ichiki S, Nagasoe S, Matsubara T, Shimasaki Y, Nakao M, Yamaguchi K, Oshima Y, Oda T, Ito M, Jenkinson IR, Asakawa M, Honjo T (2009) Extracellular polysaccharide–protein complexes of a harmful alga mediate the allelopathic control it exerts within the phytoplankton community. ISME J 3(7):808–817. doi:10.1038/ismej.2009.24

    Article  CAS  PubMed  Google Scholar 

  • Yang YL, Xu YQ, Kersten RD, Liu WT, Meehan MJ, Moore BS, Bandeira N, Dorrestein PC (2011) Connecting chemotypes and phenotypes of cultured marine microbial assemblages by imaging mass spectrometry. Angew Chem Int Ed 50(26):5839–5842. doi:10.1002/anie.201101225

    Article  CAS  Google Scholar 

  • Yoshimura H, Ikeuchi M, Ohomori M (2012) Cell surface-associated proteins in the filamentous cyanobacterium Anabaena sp. strain PCC 7120. Microbes Environ 27(4):538–543

    Article  PubMed  Google Scholar 

  • Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ, Brinkman FS (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26(13):1608–1615. doi:10.1093/bioinformatics/btq249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zubkov MV, Fuchs BM, Tarran GA, Burkill PH, Amann R (2003) High rate of uptake of organic nitrogen compounds by Prochlorococcus cyanobacteria as a key to their dominance in oligotrophic oceanic waters. Appl Environ Microbiol 69(2):1299–1304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Erika Weidman, Victoria King, Marcy Thompson, and Kaila Redifer for their technical assistance and protocol development efforts during the course of this investigation. The mass spectrometry resources are maintained by the Virginia Tech Mass Spectrometry Incubator, a facility operated in part through funding by the Fralin Life Science Institute at Virginia Tech. The SynaptG2-S HDMS mass spectrometer was purchased with funds from the College of Agricultural and Life Sciences at Virginia Tech. This work was also supported by the Agricultural Experiment Station Hatch Program at Virginia Tech (CRIS Project Number: VA-135981).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard F. Helm.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2963 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vilhauer, L., Jervis, J., Ray, W.K. et al. The exo-proteome and exo-metabolome of Nostoc punctiforme (Cyanobacteria) in the presence and absence of nitrate. Arch Microbiol 196, 357–367 (2014). https://doi.org/10.1007/s00203-014-0974-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-014-0974-2

Keywords

Navigation