Skip to main content
Log in

Location and contribution of individual β-glucosidase from Neurospora crassa to total β-glucosidase activity

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

This study investigated the cellular location and the contribution of individual β-glucosidase (BGL) to total BGL activity in Neurospora crassa. Among the seven bgl genes, bgl3, bgl5, and bgl7 were transcribed at basal levels, whereas bgl1, bgl2, bgl4, and bgl6 were significantly up-regulated when the wild-type strain was induced with cellulose (Avicel). BGL1 and BGL4 were found to be contributors to intracellular BGL activity, whereas the activities of BGL2 and BGL6 were mainly extracellular. Sextuple bgl deletion strains expressing one of the three basally transcribed bgls did not produce any detectable BGL activity when they were grown on Avicel. BGL6 is the major contributor to overall BGL activity, and most of its activity resides cell-bound. The sextuple bgl deletion strain containing only bgl6 utilized cellobiose at a rate similar to that of the wild type, while the strain with only bgl6 deleted utilized cellobiose much slower than that of the wild type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amore A, Giacobbe S, Faraco V (2013) Regulation of cellulase and hemicellulase gene expression in fungi. Curr Genomics 14:230–249

    Article  CAS  Google Scholar 

  • Baldrian P, Valaskova V (2008) Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev 32:501–521

    Article  PubMed  CAS  Google Scholar 

  • Bohlin C, Olsen SN, Morant MD, Patkar S, Borch K, Westh P (2010) A comparative study of activity and apparent inhibition of fungal beta-glucosidases. Biotechnol Bioeng 107:943–952

    Article  PubMed  CAS  Google Scholar 

  • Fan Z, Wu W, Hildebrand A, Kasuga T, Zhang R, Xiong X (2012) A novel biochemical route for fuels and chemicals production from cellulosic biomass. PLoS One 7:e31693

    Article  PubMed  CAS  Google Scholar 

  • Fowler T, Brown RD (1992) The bgl1 gene encoding extracellular beta-glucosidase from Trichoderma reesei is required for rapid induction of the cellulase complex. Mol Microbiol 6:3225–3235

    Article  PubMed  CAS  Google Scholar 

  • Galagan JE et al (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–868

    Article  PubMed  CAS  Google Scholar 

  • Galazka JM, Tian CG, Beeson WT, Martinez B, Glass NL, Cate JHD (2010) Cellodextrin transport in yeast for improved biofuel production. Science 330:84–86

    Article  PubMed  CAS  Google Scholar 

  • Ha SJ et al (2011) Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci USA 108:504–509

    Article  PubMed  CAS  Google Scholar 

  • Hakkinen M et al (2012) Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates. Microb Cell Fact 11:134. doi:10.1186/1475-2859-11-134

    Article  PubMed  CAS  Google Scholar 

  • Henrissat B (1998) Glycosidase families. Biochem Soc Trans 26:153–156

    PubMed  CAS  Google Scholar 

  • Henrissat B, Romeu A (1995) Families, superfamilies and subfamilies of glycosyl hydrolases. Biochem J 311:350–351

    PubMed  CAS  Google Scholar 

  • Mach RL et al (1995) The bgl1 gene of Trichoderma reesei QM 9414 encodes an extracellular, cellulose-inducible beta-glucosidase involved in cellulase induction by sophorose. Mol Microbiol 16:687–697

    Article  PubMed  CAS  Google Scholar 

  • Maddi A, Bowman SM, Free SJ (2009) Trifluoromethanesulfonic acid-based proteomic analysis of cell wall and secreted proteins of the ascomycetous fungi Neurospora crassa and Candida albicans. Fungal Genet Biol 46:768–781

    Article  PubMed  CAS  Google Scholar 

  • Messner R, Kubicek CP (1990) Evidence for a single, specific beta-glucosidase in cell-walls from Trichoderma reesei QM9414. Enzyme Microbial Technol 12:685–690

    Article  CAS  Google Scholar 

  • Nissen TL, Kielland-Brandt MC, Nielsen J, Villadsen J (2000) Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metab Eng 2:69–77

    Article  PubMed  CAS  Google Scholar 

  • Phillips CM, Iavarone AT, Marletta MA (2011) Quantitative proteomic approach for cellulose degradation by Neurospora crassa. J Proteome Res 10:4177–4185

    Article  PubMed  CAS  Google Scholar 

  • Romero MD, Aguado J, Gonzalez L, Ladero M (1999) Cellulase production by Neurospora crassa on wheat straw. Enzyme Microb Technol 25:244–250

    Article  CAS  Google Scholar 

  • Saloheimo M, Kuja-Panula J, Ylosmaki E, Ward M, Penttila M (2002) Enzymatic properties and intracellular localization of the novel Trichoderma reesei beta-glucosidase BGLII (Cel1A). Appl Environ Microbiol 68:4546–4553

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Tian C et al (2009) Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa. Proc Natl Acad Sci USA 106:22157–22162

    Article  PubMed  CAS  Google Scholar 

  • Wu W, Hildebrand A, Kasuga T, Xiong X, Fan Z (2013) Direct cellobiose production from cellulose using sextuple beta-glucosidase gene deletion Neurospora crassa mutants. Enzyme Microbial Technol 52:184–189

    Article  CAS  Google Scholar 

  • Znameroski EA et al (2012) Induction of lignocellulose-degrading enzymes in Neurospora crassa by cellodextrins. Proc Natl Acad Sci USA 109:6012–6017

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by Agriculture and Food Research Initiative Competitive Grant No. 2011-67009-20060 from the USDA’s National Institute of Food and Agriculture. The authors thank Professors Jean VanderGheynst and Rebecca Parales for the qPCR and nanodrop equipment support, and Dr. Edyta Szewczyk and Ms. Amanda Hildebrand for carefully reading through the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiliang Fan.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, W., Kasuga, T., Xiong, X. et al. Location and contribution of individual β-glucosidase from Neurospora crassa to total β-glucosidase activity. Arch Microbiol 195, 823–829 (2013). https://doi.org/10.1007/s00203-013-0931-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-013-0931-5

Keywords

Navigation