Skip to main content
Log in

Required characteristics of Paenibacillus polymyxa JB-0501 as potential probiotic

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The ability of Paenibacillus polymyxa to inhibit the growth of Escherichia coli generic ATCC 25922 (Escherichia coli ATCC 25922) and to adhere to monolayers of the enterocyte-like human cell line Caco-2 was evaluated. P. polymyxa JB-0501 (P. polymyxa JB-0501), found in a livestock feed probiotic supplement, was compared to P. polymyxa reference strain ATCC 43685 and ATCC 7070 (P. polymyxa ATCC) in terms of carbohydrate utilization and resistance to lysozyme, acid, bile salts, and hydrogen peroxide. JB-0501 grew at pH 4.5 and at H2O2 concentrations less than 7.3 μg/ml and presented a higher affinity to hexadecane and decane. Bile salts at 0.2 % inhibited the growth of all three strains. P. polymyxa JB-0501 and P. polymyxa ATCC 43865 adhered to Caco-2 cell monolayers. The percentage of cells that adhered ranged from about 0.35 to 6.5 % and was partially proportional to the number applied. Contact time (from 15 min to 1 h) had little impact on adhesion. P. polymyxa JB-0501 inhibited the growth of E. coli ATCC 25922, as proven by the diffusion tests in agar. Taken together, these results suggested that P. polymyxa JB-0501 has the potential probiotic properties to justify its consideration as a livestock feed supplement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersson A, Granumb PE, Rönner U (1998) The adhesion of Bacillus cereus spores to epithelial cells might be an additional virulence mechanism. Int J Food Microbiol 39:93–99

    Article  PubMed  CAS  Google Scholar 

  • Angioi A, Zanetyi S, Sann A, Delogu G, Fadda G (1995) Adhesiveness of Bacillus subtilis strains to epithelial cells cultured in vitro. Microb Ecol Health Dis 8:71–77

    Article  Google Scholar 

  • Ash C, Priest FG, Collins MD (1993) Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek 64:253–260

    Article  PubMed  CAS  Google Scholar 

  • Cepeljnik T, Lah B, Narat M, Marinsek-Logar R (2007) Adaptation of adhesion test using Caco-2 cells for anaerobic bacterium Pseudobutyrivibrio xylanivorans, a probiotic candidate. Folia Microbiol 52:367–373

    Article  CAS  Google Scholar 

  • Charteris WP, Kelly PM, Morelli L, Collins JK (1998) Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. J Appl Microbiol 84:759–768

    Article  PubMed  CAS  Google Scholar 

  • Choi SK, Park SY, Kim R, Kim SB, Lee CH, Kim JF, Park SH (2009) Identification of polymyxin synthetase gene cluster of Paenibacillus polymyxa and heterologous expression of the gene in Bacillus subtilis. J Bacteriol 191:3350–3358

    Article  PubMed  CAS  Google Scholar 

  • Dave RI, Shah NP (1997) Viability of yoghurt and probiotic bacteria in yoghurts made from commercial starter cultures. Int Dairy J 7:31–416

    Article  Google Scholar 

  • Doyle RJ, Rosenberg M (1995) Measurement of microbial adhesion to hydrophobic substrata. Methods Enzymol 253:542–550

    Article  PubMed  CAS  Google Scholar 

  • Doyle RJ, Nedjat-Haiem F, Singh JS (1984) Hydrophobic characteristics of Bacillus spores. Cur Microbiol 10:329–333

    Article  CAS  Google Scholar 

  • Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66:365–378

    Article  PubMed  CAS  Google Scholar 

  • Fuller R (1992) History and development of probiotics. In: Fuller R (ed) Probiotics. The scientific basis. Chapman and Hall, London, pp 1–9

    Chapter  Google Scholar 

  • Gagnon M, Kheadr E, Le Blay G, Fliss I (2004) In vitro inhibition of Escherichia coli O157:H7 by bifidobacterial strains of human origin. Int J Food Microb 92:69–78

    Article  CAS  Google Scholar 

  • Gibson GR, Wang X (1994) Regulatory effects of bifidobacteria on the growth of other colonic bacteria. J Appl Bacteriol 77:412–442

    Article  PubMed  CAS  Google Scholar 

  • Gilliland SE, Staley TE, Bush LJ (1984) Importance of bile tolerance of Lactobacillus acidophilus used as a dietary adjunct. J Dairy Sci 67:3045–3051

    Article  PubMed  CAS  Google Scholar 

  • Koshikawa T, Yamazaki M, Yoshimi M, Ogawa S, Yamada A, Watabe K, Tori A (1989) Surface hydrophobicity of spores of Bacillus spp. J Gen Microbiol 135:2717–2722

    PubMed  CAS  Google Scholar 

  • Kristoffersen SM, Ravnum S, Tourasse NJ, Økstad OA, Kolstø AB, Davies W (2007) Low concentrations of bile salts induce stress responses and reduce motility in Bacillus cereus ATCC 14570. J Appl Bacteriol 189:5302–5313

    Article  CAS  Google Scholar 

  • Landman DC, Georgescu DA, Martin Quale J (2008) Polymyxins revisited. Clinical Microbiol Rev 21:449–465

    Article  CAS  Google Scholar 

  • Lankaputhra EV, Shah NP (1995) Survival of Lactobacillus acidophilus and Bifidobacterium spp. in the presence of acid and bile salts. Cult Dairy Prod J 30:2–7

    CAS  Google Scholar 

  • Naghmouchi K, Paterson L, Forster B, McAllister T, Ohene-Adjei S, Drider D, Teather R, Baah J (2011) Paenibacillus polymyxa JB05-01-1 and its perspectives for food conservation and medical applications. Arch Microbiol 3:169–177

    Article  Google Scholar 

  • Naghmouchi K, Hammami R, Fliss I, Teather R, Baah J, Drider D (2012) Colistin A and colistin B among inhibitory substances of Paenibacillus polymyxa JB05-01-1. Arch Microbiol 194:363–370

    Article  PubMed  CAS  Google Scholar 

  • Scheldeman P, Goossens K, Rodriguez-Diaz M, Pil A, Goris J, Herman L, De Vos P, Logan NA, Heyndrickx M (2004) Paenibacillus lactis sp. nov., isolated from raw and heat-treated milk. Int J Syst Evol Microbiol 54:885–891

    Article  PubMed  CAS  Google Scholar 

  • Selim S, Negrel J, Govaerts C, Gianinazzi S, van Tuinen D (2005) Isolation and partial characterization of antagonistic peptides produced by Paenibacillus sp. strain B2 isolated from the sorghum mycorrhizosphere. Appl Environ Microbiol 71:6501–6507

    Article  PubMed  CAS  Google Scholar 

  • Suskovic J, Brkic B, Matosic S, Maric V (1997) Lactobacillus acidophilus M92 as potential probiotic strain. Milchwissenschaft 52:430–435

    CAS  Google Scholar 

  • Wolf CE, Gibbons WR (1996) Improved method for quantification of the bacteriocin nisin. J Appl Bacteriol 80:453–457

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Best Environmental Technologies Inc., Edmonton, AB, Canada.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Karim Naghmouchi or Djamel Drider.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naghmouchi, K., Baah, J., Cudennec, B. et al. Required characteristics of Paenibacillus polymyxa JB-0501 as potential probiotic. Arch Microbiol 195, 537–543 (2013). https://doi.org/10.1007/s00203-013-0905-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-013-0905-7

Keywords

Navigation