Skip to main content
Log in

Identification and characterization of an iron ABC transporter operon in Gluconacetobacter diazotrophicus Pal 5

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Gluconacetobacter diazotrophicus is a nitrogen-fixing bacterium and endophyte of sugarcane. We have cloned and sequenced the genes coding for the components of the iron ABC-type acquisition system of G. diazotrophicus. Sequence analysis revealed three ORFs, (feuA, feuB, and feuC) organized as an operon and encoding polypeptides of 346 (38 kDa), 342 (34.2 kDa), and 240 (26 kDa) amino acids, respectively. The deduced translation products of the feu operon showed similarity with a periplasmic solute-binding protein (FeuA), permease (FeuB), and ATPase (FeuC) involved in Fe transport. The role of FeuB in the survival of G. diazotrophicus under iron depletion was evaluated by comparing the ability of wild-type and FeuB-KmR -mutant strains in a medium without iron supplementation and in a medium containing 2, 2′-dipyridyl (DP). Growth of the mutant was affected in the medium containing DP. The operon was expressed at higher levels in cells depleted for iron than in those that contained the metal. A decrease in nitrogenase activity was observed with the FeuB-KmR -mutant strain that with the wild-type under iron deficiency conditions, suggesting that the Feu operon play role in Fe nutrition of G. diazotrophicus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexeyev MF, Shokolenko IN, Croghan TP (1995) Improved antibiotic-resistance gene cassettes and omega elements for Escherichia coli vector construction and in vitro deletion/insertion mutagenesis. Gene 160:63–67

    Article  PubMed  CAS  Google Scholar 

  • Baldani JI, Baldani VLD (2005) History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. Ann Acad Bras Cienc 77:549–579

    Article  CAS  Google Scholar 

  • Bearden SW, Staggs TM, Perry RD (1998) An ABC transporter system of Yersinia pestis allow utilization of chelated iron by Escherichia coli SAB11. J Bact 180:1135–1147

    PubMed  CAS  Google Scholar 

  • Bertalan M, Albano R, Padua V, Rouws L et al (2009) Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5 BMC. Genomics 10:450–466

    Article  PubMed  Google Scholar 

  • Blatny JM, Brautaset T, Winther-Larsen HC, Haugan K, Valla S (1997) Construction and use of a versatile set of broad-host-range cloning and expression vectors based on the RK2 replicon. Appl Environ Microbiol 63:370–379

    PubMed  CAS  Google Scholar 

  • Cavalcante VA, Döbereiner J (1988) A new acid-tolerant nitrogen- fixing bacterium associated with sugarcane. Plant Soil 108:23–31

    Article  Google Scholar 

  • Cunha e Silva RM, Almeida SE, Valencia EPE, Nascimento Filbo VF (2004) Determination of Fe, Cu, and Zn in sugar cane spirits commercialized in Southeastern Brazil by TXRF. J Radioanal Nucl Chem 260:3–7

    Article  CAS  Google Scholar 

  • Davidson AL, Chen J (2004) ATP-binding cassette transporter in bacteria. Ann Rev Biochem 73:241–268

    Article  PubMed  CAS  Google Scholar 

  • De Lorenzo V, Wee S, Herrero M, Neilands JB (1987) Operator sequences of the aerobactin operon ColV-K30 binding the ferric uptake regulation (fur) repressor. J Bacteriol 169:2624–2630

    PubMed  Google Scholar 

  • Dean CR, Poole K (1993) Cloning and characterization of the ferric enterobactin receptor gene (pfe) of Pseudomonas aeruginosa. J Bacteriol 175:317–324

    PubMed  CAS  Google Scholar 

  • Escolar L, Pérez-Martín P, De Lorenzo V (1999) Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol 181:6223–6229

    PubMed  CAS  Google Scholar 

  • Fetherston JD, Bertolino VJ, Perry RD (1999) YbtP and YbtQ two ABC transporters required for iron uptake in Yersinia pestis. Mol Microbiol 32:289–299

    Article  PubMed  CAS  Google Scholar 

  • Galimand M, Perroud B, Delforme F, Paquetin A, Vieille C, Bozouklian H, Elmerich C (1989) Identification of DNA regions homologous to nitrogen fixation genes nifE, nifUS and fixABC in Azospirillum brasilense Sp7. J Gen Microbiol 135:1047–1059

    PubMed  CAS  Google Scholar 

  • Genco CA, Dixon DW (2001) Emerging strategies in microbial haem capture. Mol Microbiol 39:1–11

    Article  PubMed  CAS  Google Scholar 

  • Gillis M, Kersters K, Hoste B, Janssens D, Kroppenstedt RM, Stephan MP, Teixeira KRS, Döbereiner J, De Ley J (1989) Acetobacter diazotrophicus sp. nov., a nitrogen fixing acetic acid bacterium associated with sugarcane. Int J Syst Bacteriol 39:361–364

    Article  Google Scholar 

  • Howard JB, Rees DC (2006) How many metals dos it takes to fix N2? A mechanistic overview of biological nitrogen fixation. P Natl Acad Sci USA 103:17088–17093

    Article  CAS  Google Scholar 

  • Jimenez-Salgado T, Fuentes-Ramirez LE, Tapia-Hernandez A, Mascarua MA, Martinez-Romero E, Caballero-Mellado J (1997) Coffea arabica L., a new host plant for Acetobacter diazotrophicus and isolation of other nitrogen fixing acetobacteria. Appl Environ Microbiol 63:3676–3683

    PubMed  CAS  Google Scholar 

  • Köster W (2001) ABC transporter-mediated uptake of iron, siderophores, heme and vitamin B12. Res Microbiol 152:291–301

    Article  PubMed  Google Scholar 

  • Krause A, Ramakumar A, Bartels D, Battistoni F et al (2006) Complete genome of the mutualistic, N2-fixing grass endophyte Azoarcus sp. strain BH72. Nat Biotechnol 24:1385–1391

    Article  PubMed  CAS  Google Scholar 

  • Lemanceau P, Bauer P, Kraemer S, Briat JF (2009) Iron dynamics in the rhizosphere as a case study for analyzing interactions between soil, plants and microbes. Plant Soil 321:513–535

    Article  CAS  Google Scholar 

  • Logeshwaran P, Thangaraju M, Rajasundari K (2009) Hydroxamate siderophores of endophytic bacteria gluconacetobacter diazotrophicus isolated from sugarcane roots. Aust J Basic Appl Sci 3:3564–3567

    CAS  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Miller Sal MS, Schell M, Whittmore JD, Raulston JE (2009) Chamydia trachomatis YtgA is an iron-binding periplasmic protein induced by iron restriction. Microbiol SGM 155:2884–2894

    Article  Google Scholar 

  • Muthukumarasamy R, Revathi G, Seshadri S, Lakshminarasimhan C (2002) Gluconacetobacter diazotrophicus (syn. Acetobacter diazotrophicus), a promising diazotrophic endophyte in tropics. Curr Sci 83:137–145

    CAS  Google Scholar 

  • Nakai K, Horton P (1999) PSORT: a program for detecting the sorting signals of proteins and predicting their subcellular localization. Trends Biochem Sci 24:34–35

    Article  PubMed  CAS  Google Scholar 

  • Reis VM, Döbereiner J (1998) Effect of high sugar concentration on nitrogenase activity of Acetobacter diazotrophicus. Arch Microbiol 171:13–18

    Article  PubMed  CAS  Google Scholar 

  • Rosconi F, Souza EM, Pedrosa FO, Platero RA, González C, González M, Batista S, Gill PR, Fabiano ER (2006) Iron depletion affects nitrogenase activity and expression of nifH and nifA genes in Herbaspirillum seropedicae. FEMS Microbiol Lett 258:214–219

    Article  PubMed  CAS  Google Scholar 

  • Runyen-Janecky LJ, Reeves SA, Gonzalez EG, Payne SM (2003) Contribution of the Shigella flexneri Sit, Iuc and Feo iron acquisition systems to iron acquisition in vitro and cultured cells. Infect Immun 71:1919–1928

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Saravanan VS, Osborne J, Madhaiyan M, Mathew I, Chung J, Ahn K, Sa TM (2007) Zinc metal solubilization by Gluconacetobacter diazotrophicus and induction of pleomorphic cells. J Microbiol Biotechnol 17:1477–1482

    PubMed  CAS  Google Scholar 

  • Saravanan VS, Madhaiyan M, Osborne J, Thangaraju M, Sa TM (2008) Ecological occurrence of Gluconacetobacter diazotrophicus and nitrogen-fixing acetobacteraceae members: their possible role in plant growth promotion. Microbial Ecol 55:130–140

    Article  CAS  Google Scholar 

  • Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nat Biotechnol 1:784–791

    Article  CAS  Google Scholar 

  • Stephan MP, Oliveira M, Teixeira KRS, Martinez-Drets G, Dobereiner J (1991) Physiology and dinitrogen fixation of Acetobacter diazotrophicus. FEMS Microbiol Lett 77:67–72

    Article  CAS  Google Scholar 

  • Taoka A, Umeyama C, Fukumuri Y (2009) Identification of iron transporters expressed in the magnetotactic bacterium Magnetospirillum magnetotacticum. Curr Microbiol 58:177–181

    Article  PubMed  CAS  Google Scholar 

  • Teixeira KRS, Wülling M, Morgan T, Galler R, Zellermann E-M, Baldani JI, Kennedy C, Meletzus D (1999) Molecular analysis of the chromosomal region encoding the nifA and nifB genes of Acetobacter diazotrophicus. FEMS Microbiol Lett 176:301–309

    Article  CAS  Google Scholar 

  • Touati D (2000) Iron and oxidative stress in bacteria. Arch Biochem Biophys 373:1–6

    Article  PubMed  CAS  Google Scholar 

  • Urquiaga S, Cruz HS, Boddey RM (1992) Contribution of nitrogen fixation to sugarcane: nitrogen-15 and nitrogen-balance estimates. Soil Sci Soc Am J 56:105–114

    Article  Google Scholar 

  • Yeoman KH, Wisniewski-Dye F, Timoty C, Stevens JB, de Luca NG, Downie JA, Johnston AWB (2000) Analysis of the Rhizobium leguminosarum siderophore-uptake gene fhuA: differential expression in free-living bacteria and nitrogen-fixing bacteroids and distribution of an fhuA pseudogene in different strains. Microbiology 146:829–837

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Program Research Grant (28158-N/98) from Consejo Nacional de Ciencia y Tecnología CONACyT-Mexico. ASE was the recipient of a scholarship from CONACyT-Mexico. We are grateful to Dr. Miguel Castañeda for the gift of plasmid pBLS97 and Dr. C. Elmerich for improving the language. We thank Miss Sandra Soriano-Suárez for her technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz E. Baca.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urzúa, L.S., Vázquez-Candanedo, A.P., Sánchez-Espíndola, A. et al. Identification and characterization of an iron ABC transporter operon in Gluconacetobacter diazotrophicus Pal 5. Arch Microbiol 195, 431–438 (2013). https://doi.org/10.1007/s00203-013-0890-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-013-0890-x

Keywords

Navigation