Skip to main content
Log in

Physiological roles of mycothiol in detoxification and tolerance to multiple poisonous chemicals in Corynebacterium glutamicum

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Mycothiol (MSH) plays important roles in maintaining cytosolic redox homeostasis and in adapting to reactive oxygen species in the high-(G + C)-content Gram-positive Actinobacteria. However, its physiological roles are ill defined compared to glutathione, the functional analog of MSH in Gram-negative bacteria and most eukaryotes. In this research, we explored the impact of intracellular MSH on cellular physiology by using MSH-deficient mutants in the model organism Corynebacterium glutamicum. We found that intracellular MSH contributes significantly to resistance to alkylating agents, glyphosate, ethanol, antibiotics, heavy metals and aromatic compounds. In addition, intracellular MSH is beneficial for withstanding oxidative stress induced by various oxidants in C. glutamicum. This study greatly expanded our current knowledge on the physiological functions of mycothiol in C. glutamicum and could be applied to improve the robustness of this scientifically and commercially important species in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahsan N, Lee DG, Lee KW, Alam I, Lee SH, Bahk JD, Lee BH (2008) Glyphosate-induced oxidative stress in rice leaves revealed by proteomic approach. Plant Physiol Biochem 46:1062–1070

    Article  PubMed  CAS  Google Scholar 

  • Barnsley EA (1976) Role and regulation of the ortho and meta pathways of catechol metabolism in pseudomonads metabolizing naphthalene and salicylate. J Bacteriol 125:404–408

    PubMed  CAS  Google Scholar 

  • Belchik SM, Xun L (2011) S-glutathionyl-(chloro)hydroquinone reductases: a new class of glutathione transferases functioning as oxidoreductases. Drug Metab Rev 43:307–316

    Article  PubMed  CAS  Google Scholar 

  • Buchmeier N, Fahey RC (2006) The mshA gene encoding the glycosyltransferase of mycothiol biosynthesis is essential in Mycobacterium tuberculosis Erdman. FEMS Microbiol Lett 264:74–79

    Article  PubMed  CAS  Google Scholar 

  • Carney JR, Hong ST, Gould SJ (1997) Seongomycin: a new sulfur containing benzo[b]fluorene derived from genes clustered with those for kinamycin biosynthesis. Tetrahedron Lett 38:3139–3142

    Article  CAS  Google Scholar 

  • Eggeling L, Sahm H (1985) The formaldehyde dehydrogenase of Rhodococcus erythropolis, a trimeric enzyme requiring a cofactor and active with alcohols. Eur J Biochem 150:129–134

    Article  PubMed  CAS  Google Scholar 

  • Fanous A, Weiss W, Görg A, Jacob F, Parlar H (2008) A proteome analysis of the cadmium and mercury response in Corynebacterium glutamicum. Proteomics 8:4976–4986

    Article  PubMed  CAS  Google Scholar 

  • Feng J, Che Y, Milse J, Yin YJ, Liu L, Ruckert C, Shen XH, Qi SW, Kalinowski J, Liu SJ (2006) The gene ncgl2918 encodes a novel maleylpyruvate isomerase that needs mycothiol as cofactor and links mycothiol biosynthesis and gentisate assimilation in Corynebacterium glutamicum. J Biol Chem 281:10778–10785

    Article  PubMed  CAS  Google Scholar 

  • Fuenmayor SL, Wild M, Boyes AL, Williams PA (1998) A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2. J Bacteriol 9:2522–2530

    Google Scholar 

  • Gehin A, Guyon C, Nicod L (2006) Glyphosate-induced antioxidant imbalance in HaCaT: the protective effect of vitamins C and E. Environ Toxicol Phar 22:27–34

    Article  CAS  Google Scholar 

  • Gharieb MM, Gadd GM (2004) Role of glutathione in detoxification of metal(loid)s by Saccharomyces cerevisiae. Biometals 17:183–188

    Article  PubMed  CAS  Google Scholar 

  • Helbig K, Bleuel C, Krauss GJ, Nies DH (2008) Glutathione and transition-metal homeostasis in Escherichia coli. J Bacteriol 190:5431–5438

    Article  PubMed  CAS  Google Scholar 

  • Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77:61–68

    Article  PubMed  CAS  Google Scholar 

  • Jakoby M, Ngouoto-Nkili CE, Burkovski A (1999) Construction and application of new Corynebacterium glutamicum vectors. Biotechnol Techniques 13:437–441

    Article  CAS  Google Scholar 

  • Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283:65–87

    Article  PubMed  CAS  Google Scholar 

  • Jothivasan VK, Hamilton CJ (2008) Mycothiol: synthesis, biosynthesis and biological functions of the major low molecular weight thiol in actinomycetes. Nat Prod Rep 25:1091–1117

    Article  PubMed  CAS  Google Scholar 

  • Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13:3145–3175

    Article  PubMed  CAS  Google Scholar 

  • Kohanski MA, Dwyer DJ, Hayete B, Lawrence A, Collins JJ (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130:797–810

    Article  PubMed  CAS  Google Scholar 

  • Koledin T, Newton GL, Fahey RC (2002) Identification of the mycothiol synthase gene (mshD) encoding the acetyltransferase producing mycothiol in actinomycetes. Arch Microbiol 178:331–337

    Article  PubMed  CAS  Google Scholar 

  • Lee SY, Kim BN, Han JH, Chang ST, Choi YW, Kim YH, Min J (2010) Treatment of phenol-contaminated soil by Corynebacterium glutamicum and toxicity removal evaluation. J Hazard Mater 182:937–940

    Article  PubMed  CAS  Google Scholar 

  • Misset SM, van Ophem PW, Sakuda S, Duine JA (1997) Mycothiol, 1-O-(2′-[N-acetyl-L-cysteinyl]amido-2′-deoxy-α-D- glucopyranosyl)-D-myo-inositol, is the factor of NAD/factor-dependent formaldehyde dehydrogenase. FEBS Lett 409:21–222

    Google Scholar 

  • Newton GL, Av-Gay Y, Fahey RC (2000) A novel mycothiol-dependent detoxification pathway in mycobacteria involving mycothiol S-conjugate amidase. Biochemistry 39:10739–10746

    Article  PubMed  CAS  Google Scholar 

  • Newton GL, Koledin T, Gorovitz B, Rawat M, Fahey RC, Av-Gay Y (2003) The glycosyltransferase gene encoding the enzyme catalyzing the first step of mycothiol biosynthesis (mshA). Bacteriol 185:3476–3479

    Article  CAS  Google Scholar 

  • Newton GL, Ta P, Fahey RC (2005) A mycothiol synthase mutant of Mycobacterium smegmatis produces novel thiols and has an altered thiol redox status. J Bacteriol 187:7309–7316

    Article  PubMed  CAS  Google Scholar 

  • Newton GL, Ko M, Ta P, Av-Gay Y, Fahey RC (2006) Purification and characterization of Mycobacterium tuberculosis 1d-myo-inosityl-2-acetamido-2-deoxy-alpha-d- glucopyranoside deacetylase, MshB, a mycothiol biosynthetic enzyme. Protein Expres Purif 47:542–550

    Article  CAS  Google Scholar 

  • Newton GL, Buchmeier N, Fahey RC (2008) Biosynthesis and functions of mycothiol, the unique protective thiol of Actinobacteria. Microbiol Mol Biol Rev 72:471–494

    Article  PubMed  CAS  Google Scholar 

  • Newton GL, Leung SS, Wakabayashi JI, Rawat M, Fahey RC (2011) The DinB superfamily includes novel mycothiol, bacillithiol, and glutathione S-transferases. Biochemistry 50:10751–10760

    Article  PubMed  CAS  Google Scholar 

  • Ordóñez E, Letek M, Valbuena N, Gil JA, Mateos LM (2005) Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032. Appl Environ Microb 71:6206–6215

    Article  Google Scholar 

  • Ordóñez E, Van Belle K, Roos G, De Galan S, Letek M, Gil JA, Wyns L, Mateos LM, Messens J (2009) Arsenate reductase, mycothiol, and mycoredoxin concert thiol/disulfide exchange. J Biol Chem 284:15107–15116

    Article  PubMed  Google Scholar 

  • Park JH, Roe JH (2008) Mycothiol regulates and is regulated by a thiol-specific antisigma factor RsrA and σR in Streptomyces coelicolor. Mol Microbiol 68:861–870

    Article  PubMed  CAS  Google Scholar 

  • Rawat M, Newton GL, Ko M, Martinez GJ, Fahey RC, Av-Gay Y (2002) Mycothiol-deficient Mycobacterium smegmatis mutants are hypersensitive to alkylating agents, free radicals, and antibiotics. Antimicrob Agents Chemother 46:3348–3355

    Article  PubMed  CAS  Google Scholar 

  • Rawat M, Johnson C, Cadiz V, Av-Gay Y (2007) Comparative analysis of mutants in the mycothiol biosynthesis pathway in Mycobacterium smegmatis. Biochem Biophys Res Commun 363:71–76

    Article  PubMed  CAS  Google Scholar 

  • Romero DM, Rios de Molina MC, Juarez AB (2011) Oxidative stress induced by a commercial glyphosate formulation in a tolerant strain of Chlorella kessleri. Ecotox Environ Safe 74:741–747

    Article  CAS  Google Scholar 

  • Saharan RK, Kanwal S, Sharma SC (2010) Role of glutathione in ethanol stress tolerance in yeast Pachysolen tannophilus. Biochem Biophys Res Commun 397:307–310

    Article  PubMed  CAS  Google Scholar 

  • Sareen D, Steffek M, Newton GL, Fahey RC (2002) ATP-dependent l-cysteine:1D-myo-inosityl-2-amino-2-deoxy-alpha-D-glucopyranoside ligase, mycothiol biosynthesis enzyme MshC, is related to class I cysteinyl-tRNA synthetases. Biochemistry 41:6885–6890

    Article  PubMed  CAS  Google Scholar 

  • Schäfer A, Tauch A, Jager W, Kalinowshi J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    Article  PubMed  Google Scholar 

  • Schelder S, Zaade D, Litsanov B, Bott M, Brocker M (2011) The two-component signal transduction system CopRS of Corynebacterium glutamicum is required for adaptation to copper-excess stress. PLoS ONE 6:e22143

    Article  PubMed  CAS  Google Scholar 

  • Shen XH, Huang Y, Liu SJ (2005a) Genomic analysis and identification of catabolic pathways for aromatic compounds in Corynebacterium glutamicum. Microbes Environ 20:160–167

    Article  Google Scholar 

  • Shen XH, Jiang CY, Huang Y, Liu ZP, Liu SJ (2005b) Functional identification of novel genes involved in the glutathione-independent gentisate pathway in Corynebacterium glutamicum. Appl Environ Microbiol 71:3442–3452

    Article  PubMed  CAS  Google Scholar 

  • Shen XH, Zhou NY, Liu SJ (2012) Degradation and assimilation of aromatic compounds by Corynebacterium glutamicum: another potential for applications for this bacterium? Appl Microbiol Biotechnol 95:77–89

    Article  PubMed  CAS  Google Scholar 

  • Tauch A, Kassing F, Kalinowski J, Pühler A (1995) The Corynebacterium xerosis composite transposon Tn5432 consists of two identical insertion sequences, designated IS1249, flanking the erythromycin resistance gene ermCX. Plasmid 34:119–131

    Article  PubMed  CAS  Google Scholar 

  • Tauch A, Kirchner O, Löffler B, Götker S, Pühler A, Kalinowski J (2002) Efficient electrotransformation of Corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1. Curr Microbiol 45:362–367

    Article  PubMed  CAS  Google Scholar 

  • Thompson LC, Ladner JE, Codreanu SG, Harp J, Gilliland GL, Armstrong RN (2007) 2-Hydroxychromene-2-carboxylic acid isomerase: a kappa class glutathione transferase from Pseudomonas putida. Biochemistry 46:6710–6722

    Article  PubMed  CAS  Google Scholar 

  • Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  PubMed  CAS  Google Scholar 

  • Van Ophem PW, van Beeumen J, Duine JA (1992) NAD-linked, factor-dependent formaldehyde dehydrogenase or trimeric, zinc-containing, long-chain alcohol dehydrogenase from Amycolatopsis methanolica. Eur J Biochem 206:511–518

    Article  PubMed  Google Scholar 

  • Villadangos AF, Van Belle K, Wahni K, Tamu Dufe V, Freita S, Nur H, De Galan S, Gil JA, Collet JF, Mateos LM, Messens J (2011) Corynebacterium glutamicum survives arsenic stress with arsenate reductases coupled to two distinct redox mechanisms. Mol Microbiol 82:998–1014

    Article  PubMed  CAS  Google Scholar 

  • Vogt RN, Steenkamp DJ, Zheng R, Blanchard JS (2003) The metabolism of nitrosothiols in the mycobacteria: identification and characterization of S-nitrosomycothiol reductase. J Biochem 374:657–666

    Article  CAS  Google Scholar 

  • Zhang H, Forman HJ (2012) Glutathione synthesis and its role in redox signaling. Semin Cell Dev Biol 23:722–728

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 31170121, 31170100 and 31270078) and the Opening Project of State Key Laboratory of Microbial Resource, Institute of Microbiology, Chinese Academy of Sciences (No. SKLMR-20120601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-Hui Shen.

Additional information

Communicated by Shuang-Jiang Liu.

Ying-Bao Liu and Ming-Xiu Long contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, YB., Long, MX., Yin, YJ. et al. Physiological roles of mycothiol in detoxification and tolerance to multiple poisonous chemicals in Corynebacterium glutamicum . Arch Microbiol 195, 419–429 (2013). https://doi.org/10.1007/s00203-013-0889-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-013-0889-3

Keywords

Navigation