Skip to main content

Advertisement

Log in

Tetracycline resistance genes acquired at birth

  • Short Communication
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Newborns acquire their first microbiota at birth. Maternal vaginal or skin bacteria colonize newborns delivered vaginally or by C-section, respectively (Dominguez-Bello et al. 2010 #884). We aimed to determine differences in the presence of four tetracycline (tet) resistance genes, in the microbes of ten newborns and in the mouth and vagina of their mothers, at the time of birth. DNA was amplified by PCR with primers specific for [tet(M), tet(O), tet(Q), and tet(W)]. Maternal vaginas harbored all four tet resistance genes, but most commonly tet(M) and tet(O) (63 and 38 %, respectively). Genes coding for tet resistance differed by birth mode, with 50 % of vaginally delivered babies had tet(M) and tet(O) and 16 and 13 % of infants born by C-section had tet(O) and tet(W), respectively. Newborns acquire antibiotic resistance genes at birth, and the resistance gene profile varies by mode of delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Aires J, Doucet-Populaire F, Butel MJ (2007) Tetracycline resistance mediated by tet(W), tet(M), and tet(O) genes of Bifidobacterium isolates from humans. Appl Environ Microbiol 73:2751–2754

    Article  PubMed  CAS  Google Scholar 

  • Bager F, Madsen M, Christensen J, Aarestrup FM (1997) Avoparcin used as a growth promoter is associated with the occurrence of vancomycin-resistant Enterococcus faecium on Danish poultry and pig farms. Prev Vet Med 31:95–112

    Article  PubMed  CAS  Google Scholar 

  • Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65:232–260

    Article  PubMed  CAS  Google Scholar 

  • Coyle CM et al (2003) Activation mechanism of the CO sensor CooA—mutational and resonance Raman spectroscopic studies. J Biol Chem 278:35384–35393

    Article  PubMed  CAS  Google Scholar 

  • Dantas G, Sommer MO, Oluwasegun RD, Church GM (2008) Bacteria subsisting on antibiotics. Science 320:100–103

    Article  PubMed  CAS  Google Scholar 

  • Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417–433

    Article  PubMed  CAS  Google Scholar 

  • D’Costa VM, McGrann KM, Hughes DW, Wright GD (2006) Sampling the antibiotic resistome. Science 311:374–377

    Article  PubMed  Google Scholar 

  • de Vries LE et al (2011) The gut as reservoir of antibiotic resistance: microbial diversity of tetracycline resistance in mother and infant. PLoS ONE 6:e21644

    Article  PubMed  Google Scholar 

  • Dibner JJ, Richards JD (2005) Antibiotic growth promoters in agriculture: history and mode of action. Poult Sci 84:634–643

    PubMed  CAS  Google Scholar 

  • Dominguez-Bello MG et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 107:11971–11975

    Article  PubMed  Google Scholar 

  • Flores GE et al (2011) Microbial biogeography of public restroom surfaces. PLoS ONE 6:e28132

    Article  PubMed  CAS  Google Scholar 

  • Kembel SW et al (2012) Architectural design influences the diversity and structure of the built environment microbiome. ISME J 6:1469–1479

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Pop M (2009) ARDB—antibiotic resistance genes database. Nucleic Acids Res 37:D443–D447

    Article  PubMed  CAS  Google Scholar 

  • Lu K, Asano R, Davies J (2004) Antimicrobial resistance gene delivery in animal feeds. Emerg Infect Dis 10:679–683

    Article  PubMed  CAS  Google Scholar 

  • Mean M et al (2007) A neonatal specialist with recurrent methicillin-resistant Staphylococcus aureus (MRSA) carriage implicated in the transmission of MRSA to newborns. Infect Control Hosp Epidemiol 28:625–628

    Article  PubMed  CAS  Google Scholar 

  • Miller YW, Eady EA, Lacey RW, Cove JH, Joanes DN, Cunliffe WJ (1996) Sequential antibiotic therapy for acne promotes the carriage of resistant staphylococci on the skin of contacts. J Antimicrob Chemother 38:829–837

    Article  PubMed  CAS  Google Scholar 

  • Prudhomme M, Attaiech L, Sanchez G, Martin B, Claverys JP (2006) Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae. Science 313:89–92

    Article  PubMed  CAS  Google Scholar 

  • Ravel J et al (2011) Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci USA 108(Suppl 1):4680–4687

    Article  PubMed  CAS  Google Scholar 

  • Riesenfeld CS, Goodman RM, Handelsman J (2004) Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ Microbiol 6:981–989

    Article  PubMed  CAS  Google Scholar 

  • Roberts MC (1996) Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol Rev 19:1–24

    Article  PubMed  CAS  Google Scholar 

  • Roberts MC (2003) Tetracycline therapy: update. Clin Infect Dis 36:462–467

    Article  PubMed  CAS  Google Scholar 

  • Salyers AA, Gupta A, Wang Y (2004) Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol 12:412–416

    Article  PubMed  CAS  Google Scholar 

  • Schnappinger D, Hillen W (1996) Tetracyclines: antibiotic action, uptake, and resistance mechanisms. Arch Microbiol 165:359–369

    Article  PubMed  CAS  Google Scholar 

  • Sharland M (2007) The use of antibacterials in children: a report of the Specialist Advisory Committee on Antimicrobial Resistance (SACAR) Paediatric Subgroup. J Antimicrob Chemother 60:I15–I26

    Article  PubMed  CAS  Google Scholar 

  • Villedieu A et al (2003) Prevalence of tetracycline resistance genes in oral bacteria. Antimicrob Agents Chemother 47:878–882

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Kinkelaar D, Huang Y, Li Y, Li X, Wang HH (2011) Acquired antibiotic resistance: are we born with it? Appl Environ Microbiol 77:7134–7141. doi:10.1128/AEM.05087-11

    Article  PubMed  CAS  Google Scholar 

  • Zhou X et al (2007) Differences in the composition of vaginal microbial communities found in healthy Caucasian and black women. ISME J 1:121–133

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of the programs for undergraduate minorities at University of Puerto Rico, The Puerto Rico Louis Strokes Alliance for Minority Participation and BioMinds to AMAS, and the UPR NIH SCoRE PES program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria G. Dominguez-Bello.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 48 kb)

Supplementary material 2 (DOC 69 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alicea-Serrano, A.M., Contreras, M., Magris, M. et al. Tetracycline resistance genes acquired at birth. Arch Microbiol 195, 447–451 (2013). https://doi.org/10.1007/s00203-012-0864-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-012-0864-4

Keywords

Navigation