Skip to main content
Log in

Production and function of jasmonates in nodulated roots of soybean plants inoculated with Bradyrhizobium japonicum

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Little is known regarding production and function of endogenous jasmonates (JAs) in root nodules of soybean plants inoculated with Bradyrhizobium japonicum. We investigated (1) production of jasmonic acid (JA) and 12-oxophytodienoic acid (OPDA) in roots of control and inoculated plants and in isolated nodules; (2) correlations between JAs levels, nodule number, and plant growth during the symbiotic process; and (3) effects of exogenous JA and OPDA on nodule cell number and size. In roots of control plants, JA and OPDA levels reached a maximum at day 18 after inoculation; OPDA level was 1.24 times that of JA. In roots of inoculated plants, OPDA peaked at day 15, whereas JA level did not change appreciably. Shoot dry matter of inoculated plants was higher than that of control at day 21. Chlorophyll a decreased more abruptly in control plants than in inoculated plants, whereas b decreased gradually in both cases. Exogenous JA or OPDA changed number and size of nodule central cells and peripheral cells. Findings from this and previous studies suggest that increased levels of JA and OPDA in control plants are related to senescence induced by nutritional stress. OPDA accumulation in nodulated roots suggests its involvement in “autoregulation of nodulation.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AOC:

Allene oxide cyclase

AON:

Autoregulation of nodulation

AOS:

Allene oxide synthase

DM:

Dry matter

JA:

Jasmonic acid

JAs:

Jasmonates

LOX:

Lipoxygenase

MeJA:

Methyl-jasmonate

OPDA:

12-Oxophytodienoic acid

References

  • Andrade A, Vigliocco A, Alemano S et al (2005) Endogenous jasmonates and octadecanoids in hypersensitive tomato mutants during germination and seedling development in response to abiotic stress. Seed Sci Res 15:309–318

    Article  CAS  Google Scholar 

  • Armengaud P, Breitling R, Amtmann A (2004) The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol 136:2556–2576

    Article  PubMed  CAS  Google Scholar 

  • Burton J, Martinez C, Curley R (1972) Methods of testing and suggested standards for legume inoculants and preinoculated seed. Nitragin Corporation, USA

    Google Scholar 

  • Castro G, Kraus T, Abdala G (1999) Endogenous jasmonic acid and radial cell expansion in buds of potato tubers. J Plant Physiol 155:706–710

    Article  CAS  Google Scholar 

  • Cenzano A, Vigliocco A, Kraus T et al (2003) Exogenously applied jasmonic acid induces changes in apical meristem morphology of potato stolons. Ann Bot 91:917–921

    Article  Google Scholar 

  • Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19

    Article  Google Scholar 

  • Ferguson BJ, Indrasumunar A, Hayashi S et al (2010) Molecular analysis of legume nodule development and autoregulation. J Integr Plant Biol 52(1):61–76

    Article  PubMed  CAS  Google Scholar 

  • Fliegmann J, Furtwängler K, Malterer G et al (2010) Flavone synthase II (CYP93B16) from soybean (Glycine max L.). Phytochemistry 71:508–514

    Article  PubMed  CAS  Google Scholar 

  • Hause B, Schaarschmidt S (2009) The role of jasmonates in mutualistic symbioses between plants and soil-born microorganisms. Phytochemistry 70:589–1599

    Google Scholar 

  • Hayashi S, Gresshoff PM, Kinkema M (2008) Molecular analysis of lipoxygenases associated with nodule development in soybean. Mol Plant Microbe Interact 21:843–853

    Article  PubMed  CAS  Google Scholar 

  • He Y, Tang W, Swain JD et al (2001) Networking senescence-regulating pathways by using Arabidopsis enhancer trap lines. Plant Physiol 126:707–716

    Article  PubMed  CAS  Google Scholar 

  • Hirai MY, Fujiwara H, Awazuhara M et al (2003) Global expression profiling of sulfur-starved Arabidopsis by DNA macroarray reveals the role of O-acetyl-l-serine as a general regulator of gene expression in response to sulfur nutrition. Plant J 33:651–663

    Article  PubMed  CAS  Google Scholar 

  • Johansen DA (1940) Plant Microtechnique. McGraw-Hill Book Company Inc, New York, p 523

    Google Scholar 

  • Kinkema M, Gresshoff PM (2008) Investigation of downstream signals of the soybean autoregulation of nodulation receptor kinase GmNARK. Mol Plant Microbe Interact 21:1337–1348

    Article  PubMed  CAS  Google Scholar 

  • Mabood F, Smith DL (2005) Pre-incubation of B. japonicum with jasmonates accelerates nodulation and nitrogen fixation in soybean (Glycine max L.) at optimal and suboptimal root zone temperatures. Plant Physiol 125:311–323

    Article  CAS  Google Scholar 

  • Mabood F, Zhou X, Lee KD et al (2006a) Bradyrhizobium japonicum preincubated with methyl jasmonates increases soybean nodulation and nitrogen fixation. Agron J 98:289–294

    Article  Google Scholar 

  • Mabood F, Souleimanov A, Khan W et al (2006b) Jasmonates induce Nod factor production by B. japonicum. Plant Physiol Biochem 44:759–765

    Article  PubMed  CAS  Google Scholar 

  • Mabood F, Zhou X, Lee KD et al (2006c) Methyl jasmonate, alone or in combination with genistein, and B. japonicum increases soybean (Glycine max L.) plant dry matter production and grain yield under short season conditions. Field Crops Res 95:412–419

    Article  Google Scholar 

  • MacKinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140:315–322

    CAS  Google Scholar 

  • Martens S, Mithöfer A (2005) Flavones and flavone synthases. Phytochemistry 66:2399–2407

    Article  PubMed  CAS  Google Scholar 

  • Mohammandi M, Karr A (2003) Induced lipoxygenases in soybean root nodules. Plant Sci 164:471–479

    Article  Google Scholar 

  • Nakagawa T, Kawaguchi M (2006) Shoot-applied MeJA suppresses root nodulation in Lotus japonicus. Plant Cell Physiol 47(1):176–180

    Article  PubMed  CAS  Google Scholar 

  • Nikiforova V, Freitag J, Kempa S et al (2003) Transcriptome analysis of sulfur depletion in Arabidopsis thaliana: interlacing of biosynthetic pathways provides response specificity. Plant J 33:633–650

    Article  PubMed  CAS  Google Scholar 

  • O’Brien TP, Mccully ME (1981) The study of plant structure: principles and selected methods. Termacarphi PTY Ltd, Melbourne, p 339

    Google Scholar 

  • Pauwels L, Inzé D, Goossens A (2009) Jasmonate-inducible gene: what does it mean? Trends Plant Sci 14(2):87–91

    Article  PubMed  CAS  Google Scholar 

  • Perticari A, Parra R, Balatti P, Fiqueni M, Rodriguez Caceres E (1996) Selección de cepas de Bradyrhizobium japonicum, B. elkanii y Sinorhizobium fredii para la inoculación de soja. In: Memorias de la XVIII Reunión Latinoamericana de Rizobiología. Santa Cruz de La Sierra, Bolivia, pp 103–104

  • Porra RJ (2002) The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth Res 73:149–156

    Article  PubMed  CAS  Google Scholar 

  • Rosas S, Soria R, Correa N et al (1998) Jasmonic acid stimulates the expression of nod genes in Rhizobium. Plant Mol Biol 38:1161–1168

    Article  PubMed  CAS  Google Scholar 

  • Rossato L, MacDuff JH, Laine P et al (2002) Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: effects of methyl jasmonate on nitrate uptake, senescence, growth, and VSP accumulation. J Exp Bot 53:1131–1141

    Article  PubMed  CAS  Google Scholar 

  • Seltmann MA, Krischke M, Müller MJ et al (2010) Jasmonates regulate stress-induced senescence but not natural senescence. Plant Physiol 152:1940–1950

    Article  PubMed  CAS  Google Scholar 

  • Sembdner G, Parthier P (1993) The biochemistry and the physiological and molecular actions of jasmonates. Annu Rev Plant Physiol Plant Mol Biol 44:569–589

    Article  CAS  Google Scholar 

  • Seo HS, Song JT, Cheong JJ et al (2001) Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. Proc Natl Acad Sci USA 98:A788–A793

    Article  Google Scholar 

  • Seo HS, Li J, Lee S-Y et al (2007) The hypernodulating nts mutation induces jasmonate synthetic pathway in soybean leaves. Mol Cells 24:185–193

    PubMed  CAS  Google Scholar 

  • Sun J, Cardoza V, Mitchell DM et al (2006) Crosstalk between jasmonic acid, ethylene and Nod factor signaling allows integration of diverse inputs for regulation of nodulation. Plant J 46:961–970

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Fujino K, Kikuta Y et al (1994) Expansion of potato cells in response to jasmonic acid. Plant Sci 100:3–8

    Article  CAS  Google Scholar 

  • Theodoulou FL, Job K, Slocombe SP et al (2005) Jasmonic acid levels are reduced in COMATOSE ATP-binding cassette transporter mutants. Implications for transport of jasmonate precursors into peroxisomes. Plant Physiol 137:835–840

    Article  PubMed  CAS  Google Scholar 

  • Vernon LP (1960) Spectrophotometric determination of chlorophylls phaeophytins in plant extracts. Ann Chem 32:1144–1150

    Article  CAS  Google Scholar 

  • Wasternack C, Kombrink E (2010) Jasmonates: structural requirements for lipid-derived signals active in plant stress responses and development. ACS Chem Biol 5:63–77

    Article  PubMed  CAS  Google Scholar 

  • Yoon JY, Hamayun M, Lee SK et al (2009) Methyl jasmonate alleviated salinity stress in soybean. J Crop Sci Biotechnol 12(2):63–68

    Article  Google Scholar 

  • Zdyb A, Demchenko K, Heumann J, Mrosk C, Grzeganek P, Göbel C, Feussner I, Pawlowski K, Hause B (2011) Jasmonate biosynthesis in legume and actinorhizal nodules. New Phytol 189:568–579

    Article  PubMed  CAS  Google Scholar 

  • Zhao S, Qi X (2008) Signaling in plant disease resistance and symbiosis. J Integr Plant Biol 50:799–807

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from SECYT-UNRC and ANPCYT to G.A. The authors thank Dr. S. Anderson for English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabricio Cassán.

Additional information

Communicated by Ursula Priefer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costanzo, M.E., Andrade, A., del Carmen Tordable, M. et al. Production and function of jasmonates in nodulated roots of soybean plants inoculated with Bradyrhizobium japonicum . Arch Microbiol 194, 837–845 (2012). https://doi.org/10.1007/s00203-012-0817-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-012-0817-y

Keywords

Navigation