Skip to main content

Advertisement

Log in

Isolation and identification of a bacteriocin with antibacterial and antibiofilm activity from Citrobacter freundii

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Multi- and pan-antibiotic-resistant bacteria are a major health challenge in hospital settings. Furthermore, when susceptible bacteria establish surface-attached biofilm populations, they become recalcitrant to antimicrobial therapy. Therefore, there is a need for novel antimicrobials that are effective against multi-drug-resistant and surface-attached bacteria. A screen to identify prokaryote-derived antimicrobials from a panel of over 100 bacterial strains was performed. One compound isolated from Citrobacter freundii exhibited antimicrobial activity against a wide range of Gram-negative bacteria and was effective against biofilms. Random transposon mutagenesis was performed to find mutants unable to produce the antimicrobial compound. Transposons mapped to a bacteriocin gene located on a small plasmid capable of replication in Escherichia coli. The plasmid was sequenced and found to be highly similar to a previously described colicinogenic plasmid. Expression of the predicted bacteriocin immunity gene conferred bacteriocin immunity to E. coli. The predicted bacteriocin gene, colA-43864, expressed in E. coli was sufficient to generate anti-microbial activity, and purified recombinant ColA-43864 was highly effective in killing E. coli, Citrobacter species, and Klebsiella pneumoniae cells in a planktonic and biofilm state. This study suggests that bacteriocins can be an effective way to control surface-attached pathogenic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson GG, O’Toole GA (2008) Innate and induced resistance mechanisms of bacterial biofilms. Curr Top Microbiol Immunol 322:85–105

    Article  PubMed  CAS  Google Scholar 

  • Bush K (2010) Alarming beta-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae. Curr Opin Microbiol 13:558–564

    Article  PubMed  CAS  Google Scholar 

  • Cascales E et al (2007) Colicin biology. Microbiol Mol Biol Rev 71:158–229

    Article  PubMed  CAS  Google Scholar 

  • Chai T, Wu V, Foulds J (1982) Colicin A receptor: role of two Escherichia coli outer membrane proteins (OmpF protein and btuB gene product) and lipopolysaccharide. J Bacteriol 151:983–988

    PubMed  CAS  Google Scholar 

  • Croal LR, Jiao Y, Newman DK (2007) The fox operon from Rhodobacter strain SW2 promotes phototrophic Fe(II) oxidation in Rhodobacter capsulatus SB1003. J Bacteriol 189:1774–1782

    Article  PubMed  CAS  Google Scholar 

  • Crozel V, Lazdunski C, Cavard D (1983) Localization of genes responsible for replication and immunity to colicin A on plasmid ColA-CA31. Mol Gen Genet 192:500–505

    Article  PubMed  CAS  Google Scholar 

  • Dashiff A, Junka RA, Libera M, Kadouri DE (2011) Predation of human pathogens by the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus. J Appl Microbiol 110:431–444

    Article  PubMed  CAS  Google Scholar 

  • Davies JK, Reeves P (1975) Genetics of resistance to colicins in Escherichia coli K-12: cross-resistance among colicins of group A. J Bacteriol 123:102–117

    PubMed  CAS  Google Scholar 

  • Donlan RM (2001) Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 33:1387–1392

    Article  PubMed  CAS  Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    Article  PubMed  CAS  Google Scholar 

  • Hancock V, Dahl M, Klemm P (2010) Probiotic Escherichia coli strain Nissle 1917 outcompetes intestinal pathogens during biofilm formation. J Med Microbiol 59:392–399

    Article  PubMed  Google Scholar 

  • Hecht O, Zhang Y, Li C, Penfold CN, James R, Moore GR (2010) Characterisation of the interaction of colicin A with its co-receptor TolA. FEBS Lett 584:2249–2252

    Article  PubMed  CAS  Google Scholar 

  • Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332

    Article  PubMed  Google Scholar 

  • Janda MJ, Abbott SL (2006) The Enterobacteria, 2nd edn. American Society of Microbiology, Washington, DC

    Google Scholar 

  • Kadouri D, O’Toole GA (2005) Susceptibility of biofilms to Bdellovibrio bacteriovorus attack. Appl Environ Microbiol 71:4044–4051

    Article  PubMed  CAS  Google Scholar 

  • Kadouri D, Venzon NC, O’Toole GA (2007) Vulnerability of pathogenic biofilms to Micavibrio aeruginosavorus. Appl Environ Microbiol 73:605–614

    Article  PubMed  CAS  Google Scholar 

  • Kreth J, Merritt J, Shi W, Qi F (2005) Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm. J Bacteriol 187:7193–7203

    Article  PubMed  CAS  Google Scholar 

  • Kulasekara HD, Ventre I, Kulasekara BR, Lazdunski A, Filloux A, Lory S (2005) A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Mol Microbiol 55:368–380

    Article  PubMed  CAS  Google Scholar 

  • Lewis K (2010) Persister cells. Annu Rev Microbiol 64:357–372

    Article  PubMed  CAS  Google Scholar 

  • Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    Article  PubMed  CAS  Google Scholar 

  • Medina AA, Shanks RM, Kadouri DE (2008) Development of a novel system for isolating genes involved in predator-prey interactions using host independent derivatives of Bdellovibrio bacteriovorus 109J. BMC Microbiol 8:33

    Article  PubMed  Google Scholar 

  • Merritt JH, Kadouri DE, O’Toole GA (2005) Growing and analyzing static biofilms. In: Current protocols in microbiology, pp 1B.1.1–1B.1.17

  • Morlon J, Cavard D, Lazdunski C (1982) Physical map of pColA-CA31, an amplifiable plasmid, and location of colicin A structural gene. Gene 17:317–321

    Article  PubMed  CAS  Google Scholar 

  • Morlon J, Chartier M, Bidaud M, Lazdunski C (1988a) The complete nucleotide sequence of the colicinogenic plasmid ColA. High extent of homology with ColE1. Mol Gen Genet 211:231–243

    Article  PubMed  CAS  Google Scholar 

  • Morlon J, Sherratt D, Lazdunski C (1988b) Identification of functional regions of the colicinogenic plasmid ColA. Mol Gen Genet 211:223–230

    Article  PubMed  CAS  Google Scholar 

  • Nordmann P (1998) Trends in beta-lactam resistance among Enterobacteriaceae. Clin Infect Dis 27(Suppl 1):S100–S106

    Article  PubMed  CAS  Google Scholar 

  • O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304

    Article  PubMed  Google Scholar 

  • Pillai DR, McGeer A, Low DE (2011) New Delhi metallo-beta-lactamase-1 in Enterobacteriaceae: emerging resistance. CMAJ 183:59–64

    Article  PubMed  Google Scholar 

  • Schein SJ, Kagan BL, Finkelstein A (1978) Colicin K acts by forming voltage-dependent channels in phospholipid bilayer membranes. Nature 276:159–163

    Article  PubMed  CAS  Google Scholar 

  • Shanks RM, Caiazza NC, Hinsa SM, Toutain CM, O’Toole GA (2006) Saccharomyces cerevisiae-based molecular tool kit for manipulation of genes from gram-negative bacteria. Appl Environ Microbiol 72:5027–5036

    Article  PubMed  CAS  Google Scholar 

  • Shanks RM, Kadouri DE, MacEachran DP, O’Toole GA (2009) New yeast recombineering tools for bacteria. Plasmid 62:88–97

    Article  PubMed  CAS  Google Scholar 

  • Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    Article  PubMed  CAS  Google Scholar 

  • Tait K, Sutherland IW (2002) Antagonistic interactions amongst bacteriocin-producing enteric bacteria in dual species biofilms. J Appl Microbiol 93:345–352

    Article  PubMed  CAS  Google Scholar 

  • Varenne S, Cavard D, Lazdunski C (1981) Biosynthesis and export of colicin A in Citrobacter freundii CA31. Eur J Biochem 116:615–620

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Nicholas Stella for technical assistance and Dr. Yohei Doi, Division of Infectious Diseases, University of Pittsburgh School of Medicine for kindly providing bacterial strains. This work was supported by funding from the Foundation of UMDNJ faculty research grant to D.E.K., and NIH AI085570 and a Research to Prevent Blindness Career Development Award to R.M.Q.S. Additional support was provided by NIH grant EY08098 and the Eye and Ear Foundation of Pittsburgh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel E. Kadouri.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shanks, R.M.Q., Dashiff, A., Alster, J.S. et al. Isolation and identification of a bacteriocin with antibacterial and antibiofilm activity from Citrobacter freundii . Arch Microbiol 194, 575–587 (2012). https://doi.org/10.1007/s00203-012-0793-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-012-0793-2

Keywords

Navigation