Skip to main content
Log in

Extracellular monoenzyme deglycosylation system of 7-O-linked flavonoid β-rutinosides and its disaccharide transglycosylation activity from Stilbella fimetaria

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

An Erratum to this article was published on 06 May 2011

Abstract

We screened for microorganisms able to use flavonoids as a carbon source; and one isolate, nominated Stilbella fimetaria SES201, was found to possess a disaccharide-specific hydrolase. It was a cell-bound ectoenzyme that was released to the medium during conidiogenesis. The enzyme was shown to cleave the flavonoid hesperidin (hesperetin 7-O-α-rhamnopyranosyl-β-glucopyranoside) into rutinose (α-rhamnopyranosyl-β-glucopyranose) and hesperetin. Since only intracellular traces of monoglycosidase activities (β-glucosidase, α-rhamnosidase) were produced, the disaccharidase α-rhamnosyl-β-glucosidase was the main system utilized by the microorganism for hesperidin hydrolysis. The enzyme was a glycoprotein with a molecular weight of 42224 Da and isoelectric point of 5.7. Even when maximum activity was found at 70°C, it was active at temperatures as low as 5°C, consistent with the psychrotolerant character of S. fimetaria. Substrate preference studies indicated that the enzyme exhibits high specificity toward 7-O-linked flavonoid β-rutinosides. It did not act on flavonoid 3-O-β-rutinoside and 7-O-β-neohesperidosides, neither monoglycosylated substrates. In an aqueous medium, the α-rhamnosyl-β-glucosidase was also able to transfer rutinose to other acceptors besides water, indicating its potential as biocatalyst for organic synthesis. The monoenzyme strategy of S. fimetaria SES201, as well as the enzyme substrate preference for 7-O-β-flavonoid rutinosides, is unique characteristics among the microbial flavonoid deglycosylation systems reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahn YO, Mizutani M, Saino H, Sakata K (2004) Furcatin hydrolase from Viburnum furcatum Blume is a novel disaccharide-specific acuminosidase in glycosyl hydrolase family 1. J Biol Chem 279:23405–23414

    Article  PubMed  CAS  Google Scholar 

  • Barbagallo RN, Spagna G, Palmeri R, Restuccia C, Giudici P (2004) Selection, characterization and comparison of β-glucosidase from mould and yeasts employable for enological applications. Enz Microb Technol 35:58–66

    Article  CAS  Google Scholar 

  • Baumgertel A, Grimm R, Eisenbeiß W, Kreis W (2003) Purification and characterization of a flavonol 3-O-β-heterodisaccharidase from the dried herb of Fagopyrum esculentum Moench. Phytochem 64:411–418

    Article  CAS  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  PubMed  CAS  Google Scholar 

  • Cassago A, Panepucci RA, Tortella Baião AM, Henrique-Silva F (2002) Cellophane based mini-prep method for DNA extraction from the filamentous fungus Trichoderma reesei. BMC Microbiol 2:14–18

    Article  PubMed  Google Scholar 

  • Chuankhayan P, Hua Y, Svasti J, Sakdarat S, Sullivan PA, Ketudat Cairns JR (2005) Purification of an isoflavonoid 7-O-β-apiosyl-glucoside β-glycosidase and its substrates from Dalbergia nigrescens Kurz. Phytochem 66:1880–1889

    Article  CAS  Google Scholar 

  • Daiyasu H, Saino H, Tomoto H, Mizutani M, Sakata K, Toh H (2008) Computational and experimental analyses of furcatin hydrolase for substrate specificity studies of disaccharide-specific glycosidases. J Biochem 144:467–475

    Article  PubMed  CAS  Google Scholar 

  • Genovés S, Gil JV, Vallés S, Casas JA, Manzanares P (2005) Assessment of the aromatic potential of palomino fino grape must using glycosidases. Am J Enol Vitic 56:188–191

    Google Scholar 

  • Gholipour Y, Nonami H, Erra-Balsells R (2008) In situ analysis of plant tissue underivatized carbohydrates and on-probe enzymatic degraded starch by UV-carbon nanotube-assisted laser desorption/ionization TOF mass spectrometry. Anal Biochem 383:159–167

    Article  PubMed  CAS  Google Scholar 

  • Grimaldi A, McLean H, Jiranek V (2000) Identification and partial characterization of glycosidic activities of commercial strains of the lactic acid bacterium Oenococcus oeni. Am J Enol Viticul 51:362–369

    CAS  Google Scholar 

  • Hemingway KM, Alston MJ, Chappell CG, Taylor AJ (1999) Carbohydrate-flavour conjugates in wine. Carbohydr Polym 38:283–286

    Article  Google Scholar 

  • Henrissat B, Sulzenbacher G, Bourne Y (2008) Glycosyltransferases, glycoside hydrolases: surprise, surprise!. Curr Opin Struct Biol 18:527–533

    Article  PubMed  CAS  Google Scholar 

  • Ibarz JM, Ferreira V, Hernández-Orte P, Loscos N, Cacho J (2006) Optimization and evaluation of a procedure for the gas chromatographic-mass spectrometric analysis of the aromas generated by fast acid hydrolysis of flavor precursors extracted from grapes. J Chromatogr A 1116:217–229

    Article  Google Scholar 

  • Jaworski A, Brückner H (2001) Sequences of polypeptide antibiotics stilboflavins, natural peptaibol libraries of the mold Stilbella flavipes. J Pept Scien 7:433–447

    Article  CAS  Google Scholar 

  • Kafanova TV, Busarova NG, Khudyakova YV, Isai SV (2008) Marine fungus Stilbella aciculosa as a potential producer of prostaglandins. Microbiology 77:451–454

    Article  CAS  Google Scholar 

  • Kato N, Suyama S, Shirokane M, Kato M, Kobayashi T, Tsukagoshi N (2002) Novel-glucosidase from Aspergillus nidulans with strong transglycosylation activity. Appl Environ Microbiol 68:1250–1256

    Article  PubMed  CAS  Google Scholar 

  • Klose S, Tabatabai MA (2002) Response of glycosidases in soils to chloroform fumigation. Biol Fertil Soils 35:262–269

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lai LB, Gopalan V, Glew RH (1992) Continuous spectrophotometric assays for β-glucosidases acting on the plant glucosides L-picein and prunasin. Anal Biochem 2:365–369

    Article  Google Scholar 

  • Lehr NA, Meffert A, Antelo L, Sterner O, Anke H, Weber RWS (2006) Antiamoebins, myrocin B and the basis of antifungal antibiosis in the coprophilous fungus Stilbella erythrocephala (syn. S. fimetaria). FEMS Microbiol Ecol 55:105–112

    Article  PubMed  CAS  Google Scholar 

  • Ma SJ, Mizutani M, Hiratake J, Hayashi K, Yagi K, Watanabe N, Sakata K (2001) Substrates specificity of β-primeverosidase, a key enzyme in aroma formation during oolong tea and black tea manufacturing. Biosci Biotechnol Biochem 65:2719–2729

    Article  PubMed  CAS  Google Scholar 

  • Manthey JA, Grohmann K (1996) Concentrations of hesperidin and other orange peel flavonoids in citrus processing byproducts. J Agric Food Chem 44:811–814

    Article  CAS  Google Scholar 

  • Manzanares P, van den Broeck HC, de Graaff LH, Visser J (2001) Purification and characterization of two different α-l-rhamnosidases, RhaA and RhaB, from Aspergillus aculeatus. Appl Environ Microbiol 67:2230–2234

    Article  PubMed  CAS  Google Scholar 

  • Martearena M, Daz M, Ellenrieder G (2007) Synthesis of rutinosides and rutinose by reverse hydrolysis catalyzed by fungal α-l-rhamnosidases. Biocatal Biotransf 26:177–185

    Article  Google Scholar 

  • Martínez MA, Delgado OD, Breccia JD, Baigorí MD, Siñeriz F (2002) Revision of the taxonomic position of the xylanolytic Bacillus sp. MIR32 reidentified as Bacillus halodurans and plasmid-mediated transformation of B. halodurans. Extremophiles 6:391–395

    Article  PubMed  Google Scholar 

  • Mauludin R, Müller RH (2008) Hesperidin smart crystals: redispersibility and improved solubility properties. Pharmacogenetics/Pharmacogenomics Virtual J (http://www.aapsj.org) 10: S2

  • Miller GL (1959) Use of dinitrosalisylic acid (DNS) for determination of reducing sugars. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Mizutani M, Nakanishi H, Ema J, Ma SJ, Noguchi E, Inohara-Ochiai M, Fukuchi-Mizutani M, Nakao M, Sakata K (2002) Cloning of β-primeverosidase from tea leaves, a key enzyme in tea aroma formation. Plant Physiol 130:2164–2176

    Article  PubMed  CAS  Google Scholar 

  • Møller HJ, Poulsen HJ (1996) Staining of Glycoproteins/Proteoglycans on SDS-Gels. In: Walker JM (ed) The protein protocols handbook. Humana Press, New York, pp 627–631

    Chapter  Google Scholar 

  • Monti D, Pišvejcová A, Křen V, Lama M, Riva S (2004) Generation of an α-l-rhamnosidase library and its application for the selective derhamnosylation of natural products. Biotechnol Bioeng 87:763–771

    Article  PubMed  CAS  Google Scholar 

  • Monti D, Candido A, Cruz Silva MM, Křen V, Riva S, Danieli B (2005) Biocatalyzed generation of molecular diversity: selective modification of the saponin asiaticoside. Adv Synth Catal 347:1168–1174

    Article  CAS  Google Scholar 

  • Nakanishi F, Nagasawa Y, Kabaya Y, Sekimoto H, Shimomura K (2005) Characterization of lucidin formation in Rubia tinctorum L. Plant Physiol Biochem 43:921–928

    Article  PubMed  CAS  Google Scholar 

  • Narikawa T, Shinoyama H, Fujii T (2000) A β-rutinosidase from Penicillium rugulosum IFO 7242 that is a peculiar flavonoid glycosidase. Biosci Biotechnol Biochem 64:1317–1319

    Article  PubMed  CAS  Google Scholar 

  • Nonami H, Fukui S, Erra-Balsells R (1997) β-Carboline alkaloids as matrices for matrix-assisted ultraviolet laser desorption time-of flight mass spectrometry of proteins and sulfated oligosaccharides: a comparative study using phenylcarbonyl compounds, carbazoles and classical matrices. J Mass Spectrom 32:287–296

    Article  CAS  Google Scholar 

  • Oakley BR, Kirsch DR, Morris NR (1980) A simplified ultrasensitive stain for detecting proteins in polyacrylamide gels. Anal Biochem 105:361–363

    Article  PubMed  CAS  Google Scholar 

  • Orrillo AG, Ledesma P, Delgado OD, Spagna G, Breccia JD (2007) Cold-active α-l-rhamnosidase from psychrotolerant bacteria isolated from a sub-Antarctic ecosystem. Enz Microb Technol 40:236–241

    Article  CAS  Google Scholar 

  • Polaina J, MacCabe AP (2007) Industrial enzymes. Function and applications. Springer, Netherlands

    Book  Google Scholar 

  • Promega (2008) Protocols and application guide. Promega Corporation, Madison, Wisconsin

    Google Scholar 

  • Puder C, Wagner K, Vettermann R, Hauptmann R, Potterat O (2005) Terphenylquinone inhibitors of the Src protein tyrosine kinase from Stilbella fimetaria. J Nat Produc 68:323–326

    Article  CAS  Google Scholar 

  • Russell NJ (2000) Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles 4:83–90

    Article  PubMed  CAS  Google Scholar 

  • Sang-Joon L, Omori T, Kodama T (1990) Purification and some properties of rutinosidase from Arthrobacter sp. Kor J Appl Microbiol Biotech 18:360–367

    Google Scholar 

  • Sarry JE, Gunata Z (2004) Plant and microbial glycoside hydrolases: volatile release from glycosidic aroma precursors. Food Chem 87:509–521

    Article  CAS  Google Scholar 

  • Schimel JP, Fahnestock J, Michaelson G, Mikan C, Ping C-L, Romanovsky VE, Welker J (2006) Cold-season production of CO2 in Arctic soils: can laboratory and field estimates be reconciled through a simple modeling approach? Arct Antarc Alp Res 38:249–256

    Article  Google Scholar 

  • Seifert KA (1985) A monograph of Stilbella and some allied Hyphomycetes. Stud Mycol 27:1–235

    Google Scholar 

  • Shaw LJ, Morris P, Hooker JE (2006) Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol 8:1867–1880

    Article  PubMed  CAS  Google Scholar 

  • Slapeta J, Moreira D, López-García P (2005) The extent of protist diversity: insights from molecular ecology of freshwater eukaryotes. Proc R Soc B 272:2073–2081

    Article  PubMed  CAS  Google Scholar 

  • Spagna G, Barbagallo RN, Greco E, Manenti I, Pifferi P (2002) A mixture of purified glycosidases from Aspergillus niger for oenological application immobilized by inclusion in chitosan gels. Enz Microb Technol 30:80–89

    Article  CAS  Google Scholar 

  • Tsuruhami K, Mori S, Amarume S, Sarawatari S, Murata T, Hirakake J, Sakata K, Usui T (2006) Isolation and characterization of a β-primeverosidase-like enzyme from Penicillium multicolor. Biosci Biotechnol Biochem 70:691–698

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Kurasawa E, Yamaguchi Y, Kubota K, Kobayashi A (2001) Analysis of glycosidically bound aroma precursors in tea leaves. 2. Changes in glycoside contents and glycosidase activities in tea leaves during the black tea manufacturing process. J Agric Food Chem 49:1900–1903

    Article  PubMed  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White T (eds) PCR protocols: a guide to methods and applications. Academic Press, Orlando, pp 315–322

    Google Scholar 

  • Williams PJ, Strauss CR, Wilson B, Massy-Westropp RA (1982) Use of C18 reversed-phase liquid chromatography for the isolation of monoterpene glycosides and nor-isoprenoid precursors from grape juice and wines. J Chromatogr 235:471–480

    Article  CAS  Google Scholar 

  • Yamamoto S, Okada M, Usui T, Sakata K (2002) Isolation and characterization of a β-primeverosidase-like endo-manner β-glycosidase from Aspergillus fumigatus AP-20. Biosci Biotechnol Biochem 66:801–807

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto S, Okada M, Usui T, Sakata K, Toumoto A, Tsuruhami K (2006) Diglycosidase isolated from microorganisms. US Patent 7109014

Download references

Acknowledgments

This work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Pampa (UNLPam) and Agencia Nacional de Promoción Científica y Técnica (ANPCyT) of Argentina. The authors gratefully thank the contributions of Eduardo Piontelli, Jorge Oyhenart and Alejandra Martínez in strain identification, Martin Hedström for mass spectrometry analysis and María Rita Martearena, Elsa Scaroni and Mirta Daz for the generous gift of flavonoids. Finally, we are indebted to Maria Andersson for helpful suggestions and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier D. Breccia.

Additional information

Communicated by Erko Stackebrandt.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00203-011-0709-6

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazzaferro, L., Piñuel, L., Minig, M. et al. Extracellular monoenzyme deglycosylation system of 7-O-linked flavonoid β-rutinosides and its disaccharide transglycosylation activity from Stilbella fimetaria . Arch Microbiol 192, 383–393 (2010). https://doi.org/10.1007/s00203-010-0567-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-010-0567-7

Keywords

Navigation