Skip to main content

Advertisement

Log in

Reduced expression of virulence factors in multidrug-resistant Pseudomonas aeruginosa strains

  • Short Communication
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

MDR Pseudomonas aeruginosa strains are isolated from clinical specimens with increasing frequency. It seems that acquiring genes which determine antibiotic resistance usually comes at a biological cost of impaired bacterial physiology. There is no information on investigations comparing phenotypic differences in MDR and MDS P. aeruginosa strains in literature. The study included 150 clinical P. aeruginosa isolates (75 classified as MDS and 75 as MDR). PFGE analysis revealed five pairs of identical isolates in the group of MDR strains and the results obtained for these strains were not included in the statistical analyses. MDR strains adhered to polystyrene to a lesser extent than MDS strains. The growth rate in the liquid medium was significantly lower for MDR strains. Detectable amounts of alginate were present in the culture supernatants of seven MDS and six MDR strains. The MDR P. aeruginosa strains which were investigated produced significantly lower amounts of extracellular material binding Congo Red, lower lipolytic, elastase, LasA protease, phospholipase C activity and pyocyanin quantity in culture supernatants when compared with MDS strains. No significant differences were observed between MDR and MDS strains in proteolytic activity. In conclusion, the MDR P. aeruginosa strains have impaired virulence when compared to MDS strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Abbreviations

MDS:

Multidrug sensitive

MDR:

Multidrug resistant

OD:

Optical density

References

  • Andersson DI (2006) The biological cost of mutational antibiotic resistance: any practical conclusions? Curr Opin Microbiol 9:461–465

    Article  CAS  PubMed  Google Scholar 

  • Andersson DI, Levin BR (1999) The biological cost of antibiotic resistance. Curr Opin Microbiol 2:489–493

    Article  CAS  PubMed  Google Scholar 

  • Bagge N, Schuster M, Hentzer M, Ciofu O, Givskov M, Greenberg E, Hoiby N (2004) Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and ß-lactamase and alginate production. Antimicrob Agents Chemother 48:1175–1187

    Article  CAS  PubMed  Google Scholar 

  • Bratu S, Gupta J, Quale J (2006) Expression of the las and rhl quorum-sensing systems in clinical isolates of Pseudomonas aeruginosa does not correlate with efflux pump expression or antimicrobial resistance. J Antimicrob Chemother 58:1250–1253

    Article  CAS  PubMed  Google Scholar 

  • Chirstensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF, Melton DM, Beachey EH (1985) Adherence of coagulase-negative staphylococci to plastic tissue culture plates a quantitative model for adherence of staphylococci to medical devices. J Clin Microbiol 22:996–1006

    Google Scholar 

  • Cowell BA, Twinnig SS, Hobden JA, Kwong MS, Fleiszig SM (2003) Mutation of lasA and lasB reduces Pseudomonas aeruginosa invasion of epithelial cells. Microbiology 149:2291–2299

    Article  CAS  PubMed  Google Scholar 

  • D’Agata EM (2004) Rapidly rising prevalence of nosocomial multidrug-resistant, Gram-negative bacilli: a 9-year surveillance study. Infect Cotrol Hosp Epidemiol 25:824–826

    Google Scholar 

  • Deplano A, Denis O, Poirel L, Hocquet D, Nonhoff C, Nordman P, Vincent JL, Struelens MJ (2005) Molecular characterization of an epidemic clone of panantibiotic-resistant Pseudomonas aeruginosa. J Clin Mircobiol 43:1198–1204

    Article  CAS  Google Scholar 

  • Di Martino P, Sirot D, Joly B, Rich C, Darfeuille-Michaud A (1997) Relationship between adhesion to intestinal Caco-2 cells and multidrug resistance in Klebsiella pneumoniae strains. J Clin Microbiol 35:1499–1503

    CAS  PubMed  Google Scholar 

  • Dietrich LE, Price-Whelan A, Petersen A, Whiteley M, Newman DK (2006) The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol Microbiol 61:1308–1321

    Article  CAS  PubMed  Google Scholar 

  • Fothergill JL, Panagea S, Hart CA, Walshaw MJ, Pitt TL, Winstanley C (2007) Widespread pyocyanin over-production among isolates of a cystic fibrosis epidemic strains. BMC Microbiol 23; 7:45

    Google Scholar 

  • Grimwood K, To M, Rabin HR, Woods DE (1989) Inhibition of Pseudomonas aeruginosa exoenzyme expression by subinhibitory antibiotic concentrations. Antimicrob Agents Chemother 33:41–47

    CAS  PubMed  Google Scholar 

  • Hentzer M, Teitzel GM, Balzer GJ (2001) Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183:5395–5401

    Article  CAS  PubMed  Google Scholar 

  • Hill D, Rose B, Pajkos A, Robinson M, Bye P, Bell S, Elkins M, Thompson B, Macleod C, Aaron SD, Harbour C (2005) Antibiotic susceptabilities of Pseudomonas aeruginosa isolates derived from patients with cystic fibrosis under aerobic, anaerobic and biofilm conditions. J Clin Microbiol 43:5085–5090

    Article  CAS  PubMed  Google Scholar 

  • Hocquet D, Berthelot P, Roussel-Delvallez M, Favre R, Jeannot K, Bajolet O, Marty N, Grattard F, Mariani-Kurkdjian P, Bingen E, Husson MO, Couetdic G, Plésiat P (2007) Pseudomonas aeruginosa may accumulate drug resistance mechanism without losing its ability to cause bloodstream infections. Antimicrob Agents Chemother 51:3531–3536

    Article  CAS  PubMed  Google Scholar 

  • Hryniewicz W, Sulikowska A, Szczypa K, Krzysztoń-Russjan J, Gniadkowski M, Skoczyńska A (2004) Recommendations for antimicrobial susceptibility testing. Mikrob Med 40:3–28

    Google Scholar 

  • Hsu DI, Okamoto MP, Murthy R, Wong-Beringer A (2005) Fluoroquinolone-resistant Pseudomonas aeruginosa: risk factors for acquisition and impact on outcomes. J Anitmicr Chemother 55:535–541

    Article  CAS  Google Scholar 

  • Ishiguro E, Ainsworth T, Trust TJ, Kay WW (1985) Congo red agar, a differential medium for Aeromonas salmonicida, detects the presence of the cell surface protein array involved in virulence. J Bacteriol 164:1233–1237

    CAS  PubMed  Google Scholar 

  • Jackson KD, Starkey M, Kremer S, Parsek MR, Wozniak DJ (2004) Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. J Bacteriol 186:4466–4475

    Article  CAS  PubMed  Google Scholar 

  • Jung A, Kleinau I, Schonian G, Bauerfeind A, Chen C, Griese M, Doring G, Gobel U, Wahn U, Paul K (2002) Sequential genotyping of Pseudomonas aeruginosa from upper and lower airways of cystic fibrosis patients. Eur Respir J 20:1457–1463

    Article  CAS  PubMed  Google Scholar 

  • Knutson CA, Jeanes A (1968) A new modification of the carbazole analysis application to heteropolysaccharides. Anal Biochem 24:470–481

    Article  CAS  PubMed  Google Scholar 

  • Köhler T, van Delden C, Curty LK, Hamzehpour MM, Pechere JC (2001) Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa. J Bacteriol 183:5213–5222

    Article  PubMed  Google Scholar 

  • Kugelberg E, Löfmark S, Wretlind B, Andersson DI (2004) Reduction of the fitness burden of quinolone resistance in Pseudomonas aeruginosa. J Antimicrob Chemother 55:22–30

    Article  PubMed  Google Scholar 

  • Kurioka S, Matsuda M (1976) Phospholipase C assay using p-nitrophenyl-phosphorylocholine together with sorbitol and its application to studying metal requirement of the enzyme. Anal Biochem 75:281–289

    Article  CAS  PubMed  Google Scholar 

  • Lambiase A, Raia V, Del Pezzo M, Sepe A, Carnovale V, Rossano F (2006) Microbiology of airway disease in a cohort of patients with cystic fibrosis. BMC Infect Dis. doi:10.1186/1471-2334-6-4

  • Landman D, Quale JM, Mayorga D, Adedeji A, Vangala K, Racishankar J, Flores C, Brooks C (2002) Citywide clonal outbreak of multiresistant Acinetobacter baumannii and Pseudomonas aeruginosa in Brooklyn, NY. The preantibiotic era has returned. Arch Intern Med 162:1515–1520

    Article  PubMed  Google Scholar 

  • Lee HW, Koh YM, Kim J, Lee JC, Lee YC, Seol SY, Cho DT, Kim J (2008) Capacity of multidrug-resistant clinical isolates of Acinetobacter baumannii to form biofilm and adhere to epithelial cell surfaces. Clin Microbiol Infect 14:49–54

    Article  CAS  PubMed  Google Scholar 

  • Linares JF, López JA, Camafeita E, Albar JP, Rojo F, Martínez JL (2005) Overexpression of the multidrug efflux pumps MexCD-OprJ and MexEF-OprN is associated with a reduction of type III secretion in Pseudomonas aeruginosa. J Bacteriol 187:1384–1391

    Article  CAS  PubMed  Google Scholar 

  • Lonon MK, Woods DE, Straus D (1988) Production of lipase by clinical isolates of Pseudomonas cepacia. J Clin Microbiol 26:979–984

    CAS  PubMed  Google Scholar 

  • Navon-Venezia S, Ben-Ami R, Carmeli Y (2005) Update on Pseudomonas aeruginosa and Acinetobacter baumannii infections in the healthcare setting. Curr Opin Infect Dis 18:306–313

    Article  PubMed  Google Scholar 

  • NCCLS (2004) Performance standards for standards for antimicrobial susceptibility testing; fourteenth edition. M100-S14

  • Obritsch MD, Fish DN, MacLaren R, Jung R (2004) National surveillance of antimicrobial resistance in Pseudomonas aeruginosa isolates obtained from intensive care unit patients from 1993 to 2002. Anitmicrob Agents Chemother 48:4606–4610

    Article  CAS  Google Scholar 

  • Ołdak E, Trafny EA (2005) Secretion of proteases by Pseudomonas aeruginosa biofilms exposed to ciprofloxacin. Anitmicrob Agents Chemother 49:3281–3288

    Article  Google Scholar 

  • Ran H, Hasset DJ, Lau GW (2003) Human targets of Pseudomonas aeruginosa pyocyanin. Proc Natl Acad Sci USA 100:14315–14320

    Article  CAS  PubMed  Google Scholar 

  • Sánchez P, Linares JF, Ruiz-Díez B, Campanario E, Navas A, Baquero F, Martínez JL (2002) Fitnes of in vitro selected Pseudomonas aeruginosa nalB and nfxB multidrug resistant mutants. J Antimicrob Chemother 50:657–664

    Article  PubMed  Google Scholar 

  • Schina M, Spyridi E, Daoudakis M, Mertzanos E, Korfias S (2006) Successful treatment of multidrug-resistant Pseudomonas aeruginosa meningitis with intravenous and intrathecal colistin. Int J Infect Dis 10:178–179

    Article  PubMed  Google Scholar 

  • Schoustra SE, Debetes AJM, Slakhorst M, Hoekstra RF (2006) Reducing the cost of resistance; experimental evolution in the filamentous fungus Aspergillus nidulans. J Evol Biol 19:1115–1127

    Article  CAS  PubMed  Google Scholar 

  • Schrag SJ, Perrot V (1996) Reducing antibiotic resistance. Nature 381:120–121

    Article  CAS  PubMed  Google Scholar 

  • Sieprawska-Lupa M, Mydel P, Krawczyk K, Wójcik K, Lupa B, Suder P, Silberring J, Reed M, Pohl J, Shafer W, McAleese F, Foster T, Travis J, Potempa J (2004) Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother 48:4673–4679

    Article  CAS  PubMed  Google Scholar 

  • Spratt BG (1996) Antibiotic resistance: counting the cost. Curr Biol 6:1219–2000

    Article  CAS  PubMed  Google Scholar 

  • Tam V, Schilling AN, Vo G, Kabbara S, Kwa AL, Weiderhold NP, Lewis RE (2005) Pharmacodynamics of polymyxin B against Pseudomonas aeruginosa. Antimicrob Agents Chemother 49:3624–3630

    Article  CAS  PubMed  Google Scholar 

  • Toro JC, Hoffner S, Linde C, Andersson M, Andersson J, Frundstrom S (2006) Enhanced susceptibility of multidrug resistant strains of Mycobacterium tuberculosis to granulysin peptides correlates with a reduced fitness phenotype. Microbes Infect 8:1985–1993

    Article  CAS  PubMed  Google Scholar 

  • Wozniak DJ, Wyckoff TJ, Starkey M (2003) Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci USA 100:7907–7912

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksander Deptuła.

Additional information

Communicated by Sebastian Suerbaum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deptuła, A., Gospodarek, E. Reduced expression of virulence factors in multidrug-resistant Pseudomonas aeruginosa strains. Arch Microbiol 192, 79–84 (2010). https://doi.org/10.1007/s00203-009-0528-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-009-0528-1

Keywords

Navigation