Skip to main content
Log in

Cyclic AMP regulates the biosynthesis of cellobiohydrolase in Cellulomonas flavigena growing in sugar cane bagasse

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Cellulomonas flavigena produces a battery of cellulase components that act concertedly to degrade cellulose. The addition of cAMP to repressed C. flavigena cultures released catabolic repression, while addition of cAMP to induced C. flavigena cultures led to a cellobiohydrolase hyperproduction. Exogenous cAMP showed positive regulation on cellobiohydrolase production in C. flavigena grown on sugar cane bagasse. A C. flavigena cellobiohydrolase gene was cloned (named celA), which coded for a 71- kDa enzyme. Upstream, a repressor celR1, identified as a 38 kDa protein, was monitored by use of polyclonal antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Avitia CI, Castellanos-Juárez FX, Sánchez E, Téllez-Valencia A, Fajardo-Cavazos P, Nicholson WL, Pedraza-Reyes M (2000) Temporal secretion of multicellulolytic system in Myxobacter sp. AL-1. Molecular cloning and heterologous expression of cel9 encoding a modular endocellulase clustered in an operon with cel 48, an exocellobiohydrolase gene. Eur J Biochem 267:7058–7064

    Article  CAS  PubMed  Google Scholar 

  • Bagga PS, Sandhu DK, Sharma S (1991) Effect of exogenous cyclic AMP on catabolic repression of cellulases formation in Aspergillus nidulans. Acta Biotechnol 11:395–402

    Article  CAS  Google Scholar 

  • Bayer EA, Chanzy H, Lamed R, Shoham Y (1998) Cellulose, cellulases and cellulosomes. Curr Op Struct Biol 8:548–557

    Article  CAS  Google Scholar 

  • Botsford JL, Harman JG (1992) Cyclic AMP in prokaryotes. Microbiol Rev 56:100–122

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Demain AL, Newcomb M, Wu JHD (2005) Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69:124–154

    Article  CAS  PubMed  Google Scholar 

  • Desphande MV, Eriksson KE, Pettersson LG (1984) An assay for selective determination of exo-1, 4,-β-glucanases in a mixture of cellulolytic enzymes. Anal Biochem 138:481–487

    Article  Google Scholar 

  • Emory S, Bouvet P, Belasco J (1992) A 5′terminal stem-loop structure can stabilize mRNA in Escherichia coli. Gene Dev 6:135–148

    Article  CAS  PubMed  Google Scholar 

  • Gilkes NR, Henrissat B, Kilburn DG, Miller RC Jr, Warren RAJ (1991) Domains in microbial-1, 4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev 55:303–315

    CAS  PubMed  Google Scholar 

  • Gutiérrez-Nava A, Herrera-Herrera JA, Mayorga-Reyes L, Salgado LM, Ponce-Noyola T (2003) Expression and characterization of the celcflB gene from Cellulomonas flavigena encoding an endo-beta-1, 4-glucanase. Curr Microbiol 47:359–363

    Article  PubMed  Google Scholar 

  • Henrissat B, Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7:637–644

    Article  CAS  PubMed  Google Scholar 

  • Juhász T, Szengyel Z, Réczey K, Siika-Aho M, Viikari L (2005) Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochem 40:3519–3525

    Article  Google Scholar 

  • Kim JO, Park SR, Lim W, Ryu SK, Kim M, Ch An, Cho SJ, Park Y, Kim J, Yun H (2000) Cloning and characterization of thermostable endoglucanase (Cel8Y) from the hyperthermophilic Aquifex aeolicus VF5. Biochem Biophys Res Comm 279:420–426

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Mayorga Reyes L, Gutiérrez-Nava A, Salgado L, Ponce-Noyola T (2005) Aislamiento de una clona que contiene un gen de xilanasa a partir de una genoteca de Cellulomonas flavigena. Rev Mex C Farm 36:5–9

    Google Scholar 

  • Meinke A, Gilkes NR, Kwan E, Kilburn DG, Warren ARJ, Miller RC Jr (1994) Cellobiohydrolase A (CbhA) from the cellulolytic bacterium Cellulomonas fimi is a ß-1, 4-exocellobiohydrolase analogous to Trichoderma reesei CBHII. Mol Microbiol 12:413–422

    Article  CAS  PubMed  Google Scholar 

  • Moser B, Gilkes NR, Kilburn DG, Warren RAJ, Miller RC Jr (1989) Purification and characterization of endoglucanase C of Cellulomonas fimi, cloning of the gene, and analysis of in vivo transcripts of the gene. Appl Environ Microbiol 55:2480–2487

    CAS  PubMed  Google Scholar 

  • Nguyen CC, Saier MH Jr (1995) Phylogenetic, structural and functional analyses of the LacI-GalR family of bacterial transcription factors. FEBS Lett 18:98–102

    Article  Google Scholar 

  • Ponce-Noyola T, de la Torre M (2001) Regulation of cellulases and xylanases from derepressed mutant of Cellulomonas flavigena growing on sugar cane bagasse in continuous culture. Biores Technol 78:285–291

    Article  CAS  Google Scholar 

  • Rabinovich ML, Melnick MS, Bolobova AV (2002a) Microbial cellulases (Review). Appl Biochem Microbio 38:305–321

    Article  CAS  Google Scholar 

  • Rabinovich ML, Melnick MS, Bolobova AV (2002b) The structure and mechanism of action of cellulolytic enzymes. Biochemistry 8:850–871

    Google Scholar 

  • Sambrook JE, Fritsche F, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Press, Cold Spring Harbor

    Google Scholar 

  • Sánchez-Herrera LM, Ramos-Valdivia AC, de la Torre M, Salgado LM, Ponce-Noyola T (2007) Differential expression of cellulases and xylanases by Cellulomonas flavigena grown on different carbon sources. Appl Microbiol Biotechnol 77:589–595

    Article  PubMed  Google Scholar 

  • Schwarz WH (2001) The cellulosome and cellulose degradation by anaerobic bacteria. App Microbiol Biotechnol 56:634–649

    Article  CAS  Google Scholar 

  • Shulein M (2000) Protein engineering of cellulases. Biochim Biophys Acta 1543:239–252

    Google Scholar 

  • Spirindov NA, Wilson DB (1999) Characterization and cloning of CelR, a transcriptional regulator of cellulase genes from Thermomonospora fusca. J Biol Chem 274:13127–13132

    Article  Google Scholar 

  • Voet D, Voet JG (2003) Biochemistry. Wiley, New York

    Google Scholar 

  • Wilson DB (2004) Studies of the Thermobifida fusca plant cell wall degrading enzymes. Chem Record 4:72–82

    Article  CAS  Google Scholar 

  • Wood TM, Garcia-Campayo V (1990) Enzymology of cellulose degradation. Biodegradation 1:147–161

    Article  CAS  Google Scholar 

  • Wood WE, Neubauer DG, Stutzenberger FJ (1984) Cyclic AMP levels during induction and repression of cellulase biosynthesis in Thermomonospora curvata. J Bacteriol 160:1047–1054

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grant 45678-Z from Consejo Nacional de Ciencia y Tecnología (Conacyt), Mexico. JAHH was supported by PhD fellowship from Conacyt. The authors thank M. Mercado-Morales for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Ponce-Noyola.

Additional information

Communicated by Jorge Membrillo-Hernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrera-Herrera, J.A., Pérez-Avalos, O., Salgado, L.M. et al. Cyclic AMP regulates the biosynthesis of cellobiohydrolase in Cellulomonas flavigena growing in sugar cane bagasse. Arch Microbiol 191, 745–750 (2009). https://doi.org/10.1007/s00203-009-0502-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-009-0502-y

Keywords

Navigation