Skip to main content
Log in

Functional analysis of a putative regulatory gene, tadR, involved in aniline degradation in Delftia tsuruhatensis AD9

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Delftia tsuruhatensis AD9 contains the chromosomally encoded tad gene cluster responsible for the complete metabolism of aniline to TCA cycle intermediates. The tadQTA1A2B genes encode a multi-component aniline dioxygenase, the first enzyme of aniline metabolism, and the tadR gene directly downstream of this gene cluster encodes a putative LysR-type regulatory protein. Inactivation of tadR resulted in the inability to degrade aniline and to grow on aniline. Transcriptional assays using a tadQ promoter (P tadQ )–lacZ fusion revealed that the transcriptional activation of tadQ from P tadQ was dependent on the presence of tadR and aniline, suggesting that tadR encodes a positive regulatory protein for the expression of at least six genes. Induction experiments using the same P tadQ lacZ fusion showed that, of the 22 chemical compounds, aniline and monochloroanilines activated transcription from P tadQ in wild-type AD9. Sequential deletions of a 1,003-bp region just upstream of tadQ showed that a 148-bp segment upstream of the transcription start site of tadQ, containing one inverted repeat named IR6, was essential for the transcriptional activation of tadQ. Moreover, gel shift assay confirmed the binding of the gene product to the tadQ promoter region. These results clarified the outline of the regulatory mechanism for aniline degradation in AD9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bhunia F, Saha NC, Kaviraj A (2003) Effects of aniline—an aromatic tadQ amine to some freshwater organisms. Ecotoxicology 12:397–404

    Article  PubMed  CAS  Google Scholar 

  • Chung KT, Kirkovsky L, Kirkovsky A, Purcell WP (1997) Review of mutagenicity of monocyclic aromatic amines: quantitative structure–activity relationships. Mutat Res 387:1–16

    Article  PubMed  Google Scholar 

  • Coco WM, Rothmel RK, Henikoff S, Chakrabarty AM (1993) Nucleotide sequence and initial functional characterization of the clcR gene encoding a LysR family activator of the clcABD chlorocatechol operon in Pseudomonas putida. J Bacteriol 175:417–427

    PubMed  CAS  Google Scholar 

  • Craven SH, Ezezika OC, Momany C, Neidle EL (2008) LysR homologs in Acinetobacter: insights into a diverse and prevalent family of transcriptional regulators. In: Gerischer U (ed) Acinetobacter molecular biology. Caister Academic Press, Norfolk, pp 163–202

    Google Scholar 

  • Daunert S, Barrett G, Feliciano JS, Shetty RS, Shrestha S, Smith-Spencer W (2000) Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev 100:2705–2738

    Article  PubMed  CAS  Google Scholar 

  • de Azevedo Wäsch SI, van der Ploeg JR, Maire T, Lebreton A, Kiener A, Leisinger T (2002) Transformation of isopropylamine to l-alaninol by Pseudomonas sp. KIE171 involves N-glutamylated intermediates. Appl Environ Microbiol 68:2368–2375

    Article  PubMed  Google Scholar 

  • Ditta G, Schmidhauser T, Yakobson F, Lu P, Liang X, Finlay D, Guiney D, Helinski D (1985) Plasmids related to the broad host range vector, pRK290, useful for gene cloning and for monitoring gene expression. Plasmid 13:149–153

    Article  PubMed  CAS  Google Scholar 

  • Fujii T, Takeo M, Maeda Y (1997) Plasmid-encoded genes specifying aniline oxidation from Acinetobacter sp. strain YAA. Microbiology 143:93–99

    Article  PubMed  CAS  Google Scholar 

  • Fukumori F, Saint CP (1997) Nucleotide sequences and regulational analysis involved in conversion of aniline to catechol in Pseudomonas putida UCC22 (pTDN1). J Bacteriol 179:399–408

    PubMed  CAS  Google Scholar 

  • Galimand M, Perroud B, Delorme F, Paquelin A, Vieille C, Bozouklian H, Elmerich C (1989) Identification of DNA region homologous to nitrogen fixation genes nifE, nifUS and fixABC in Azospirillum brasilense Sp7. J Gen Microbiol 135:1047–1059

    PubMed  CAS  Google Scholar 

  • Gerischer U (2002) Specific and global regulation of genes associated with the degradation of aromatic compounds in bacteria. J Mol Microbiol Biotechnol 4:111–121

    PubMed  CAS  Google Scholar 

  • Häggblom MM (1992) Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol Rev 103:29–72

    Article  Google Scholar 

  • Henikoff S, Haughn GW, Calvo JM, Wallace JC (1988) A large family of bacterial activator proteins. Proc Natl Acad Sci USA 85:6602–6606

    Article  PubMed  CAS  Google Scholar 

  • Huang WE, Wang H, Huang LF, Zheng HJ, Singer AC, Thompson IP, Whiteley AS (2005) Chromosomally located gene fusions constructed in Acinetobacter sp. ADP1 for the detection of salicylate. Environ Microbiol 7:1339–1348

    Article  PubMed  CAS  Google Scholar 

  • Huang WE, Huang L, Preston G, Naylor M, Carr JP, Li Y, Singer AC, Whiteley AS, Wang H (2006) Quantitative in situ assay of salicylic acid in tobacco leaves using a genetically modified biosensor strain of Acinetobacter sp. ADP1. Plant J 46:1073–1083

    Article  PubMed  CAS  Google Scholar 

  • Liang Q, Takeo M, Chen M, Zhang W, Xu Y, Lin M (2005) Chromosome-encoded gene cluster for the metabolic pathway that converts aniline to TCA-cycle intermediates in Delftia tsuruhatensis AD9. Microbiology 151:3435–3446

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Yang H, Huang Z, Zhou P, Liu S-J (2002) Degradation of aniline by newly isolated, extremely aniline-tolerant Delftia sp. AN3. Appl Microbiol Biotechnol 58:679–682

    Article  PubMed  CAS  Google Scholar 

  • Lyons CD, Katz S, Bartha R (1984) Mechanisms and pathways of aniline elimination from aquatic environments. Appl Environ Microbiol 48:491–496

    PubMed  CAS  Google Scholar 

  • Lyons CD, Katz S, Bartha R (1985) Persistence and mutagenic potential of herbicide-derived aniline residues in pond water. Bull Environ Contam Toxicol 35:696–703

    Article  PubMed  CAS  Google Scholar 

  • McClure NC, Venables WA (1986) Adaptation of Pseudomonas putida mt-2 to growth on aromatic amines. J Gen Microbiol 132:2209–2218

    PubMed  CAS  Google Scholar 

  • Meyer U (1981) Biodegradation of synthetic organic colorants. In: Leisinger T, Hutter R, Cook AM, Nuesch J (eds) Microbial degradation of xenobiotics and recalcitrant compounds. Academic Press, London, pp 371–385

    Google Scholar 

  • Miller JH (1972) Assay of β-galactosidase. In: Miller JH (ed) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 352–355

  • Murakami S, Hayashi T, Maeda T, Takenaka S, Aoki K (2003) Cloning and functional analysis of aniline dioxygenase gene cluster, from Frateuria species ANA-18, that metabolizes aniline via an ortho-cleavage pathway of catechol. Biosci Biotechnol Biochem 67:2351–2358

    Article  PubMed  CAS  Google Scholar 

  • Rothmel RK, Aldrich TL, Houghton JE, Coco WM, Ornston LN, Chakrabarty AM (1990) Nucleotide sequencing and characterization of Pseudomonas putida catR: a positive regulator of catBC operon is a member of the LysR family. J Bacteriol 172:922–931

    PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutumicum. Gene 145:69–73

    Article  PubMed  Google Scholar 

  • Schell MA (1985) Transcriptional control of the nah and sal hydrocarbon degradation operons by the nahR gene product. Gene 36:301–309

    Article  PubMed  CAS  Google Scholar 

  • Schell MA (1993) Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol 47:597–626

    Article  PubMed  CAS  Google Scholar 

  • Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Biotechnology 1:784–794

    Article  CAS  Google Scholar 

  • Snell FD (1954) Colorimetric methods of analysis, vol IV, 3rd edn. Van Nostrand Company, Amsterdam, pp 198–199

    Google Scholar 

  • Staskawicz B, Dahlbeck D, Keen N, Napoli C (1987) Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. J Bacteriol 169:5789–5794

    PubMed  CAS  Google Scholar 

  • Takeo M, Fujii T, Takenaka K, Maeda Y (1998) Cloning and sequencing of a gene cluster for the meta-cleavage pathway of aniline degradation in Acinetobacter sp. strain YAA. J Ferment Bioeng 85:514–517

    Article  CAS  Google Scholar 

  • Timourian H, Felton JS, Stuermer DH, Healy S, Berry P, Tompkins M, Battaglia G, Hatch FT, Thompson LH (1982) Mutagenic and toxic activity of environmental effluents from underground coal gasification experiments. J Toxicol Environ Health 9:975–994

    Article  PubMed  CAS  Google Scholar 

  • Tropel D, van der Meer JR (2004) Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Microbiol Mol Biol Rev 68:474–500

    Article  PubMed  CAS  Google Scholar 

  • Urata M, Uchida E, Nojiri H, Omori T, Obo R, Miyaura N, Ouchiyama N (2004) Genes involved in aniline degradation by Delftia acidovorans strain 7N and its distribution in the natural environment. Biosci Biotechnol Biochem 68:2457–2465

    Article  PubMed  CAS  Google Scholar 

  • van der Meer JR, Frijters AC, Leveau JH, Eggen RI, Zehnder AJ, de Vos WM (1991) Characterization of the Pseudomonas sp. strain P51 gene tcbR, a LysR-type transcriptional activator of the tcbCDEF chlorocatechol oxidative operon, and analysis of the regulatory region. J Bacteriol 173:3700–3708

    PubMed  Google Scholar 

  • Van der Meer JR, Tropel D, Jaspers M (2004) Illuminating the detection chain of bacterial bioreporters. Environ Microbiol 6:1005–1020

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Andreas Tauch, University of Bielefeld, Germany, for providing plasmid pK18mobsacB and E. coli strain S17-1 and also Dr. Issay Narumi, Atomic Energy Research Institute, Japan, for providing plasmid pKatCAT5. This work was supported by the Ministry of Science and Technology of China (National Basic Research Program Grant No. 2007CB707805 and National High-Tech Program Grant Nos. 2007AA02Z229 and 2006AA020101) and National Natural Science Foundation of China (Grant Nos. 30470047 and 30770076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Lin.

Additional information

Communicated by Walter Reineke.

L. Geng and M. Chen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geng, L., Chen, M., Liang, Q. et al. Functional analysis of a putative regulatory gene, tadR, involved in aniline degradation in Delftia tsuruhatensis AD9. Arch Microbiol 191, 603–614 (2009). https://doi.org/10.1007/s00203-009-0488-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-009-0488-5

Keywords

Navigation