Skip to main content
Log in

An N-acyl homolog of mycothiol is produced in marine actinomycetes

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Marine actinomycetes have generated much recent interest as a potentially valuable source of novel antibiotics. Like terrestrial actinomycetes the marine actinomycetes are shown here to produce mycothiol as their protective thiol. However, a novel thiol, U25, was produced by MAR2 strain CNQ703 upon progression into stationary phase when secondary metabolite production occurred and became the dominant thiol. MSH and U25 were maintained in a reduced state during early stationary phase, but become significantly oxidized after 10 days in culture. Isolation and structural analysis of the monobromobimane derivative identified U25 as a homolog of mycothiol in which the acetyl group attached to the nitrogen of cysteine is replaced by a propionyl residue. This N-propionyl-desacetyl-mycothiol was present in 13 of the 17 strains of marine actinomycetes examined, including five strains of Salinispora and representatives of the MAR2, MAR3, MAR4 and MAR6 groups. Mycothiol and its precursor, the pseudodisaccharide 1-O-(2-amino-2-deoxy-α-d-glucopyranosyl)-d-myo-inositol, were found in all strains. High levels of mycothiol S-conjugate amidase activity, a key enzyme in mycothiol-dependent detoxification, were found in most strains. The results demonstrate that major thiol/disulfide changes accompany secondary metabolite production and suggest that mycothiol-dependent detoxification is important at this developmental stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderberg SJ, Newton GL, Fahey RC (1998) Mycothiol biosynthesis and metabolism: cellular levels of potential intermediates in the biosynthesis and degradation of mycothiol. J Biol Chem 273:30391–30397

    Article  PubMed  CAS  Google Scholar 

  • Boshoff HI, Barry CE 3rd (2005) Tuberculosis—metabolism and respiration in the absence of growth. Nat Rev Microbiol 3:70–80

    Article  PubMed  CAS  Google Scholar 

  • Brock M (2005) Generation and phenotypic characterization of Aspergillus nidulans methylisocitrate lyase deletion mutants: methylisocitrate inhibits growth and conidiation. Appl Environ Microbiol 71:5465–5475

    Article  PubMed  CAS  Google Scholar 

  • Brock M, Buckel W (2004) On the mechanism of action of the antifungal agent propionate. Eur J Biochem 271:3227–3241

    Article  PubMed  CAS  Google Scholar 

  • Buchmeier N, Fahey RC (2006) The mshA gene encoding the glycosyltransferase of mycothiol biosynthesis is essential in Mycobacterium tuberculosis Erdman. FEMS Microbiol Lett 264:74–79

    Article  PubMed  CAS  Google Scholar 

  • Buchmeier NA, Newton GL, Koledin T, Fahey RC (2003) Association of mycothiol with protection of Mycobacterium tuberculosis from toxic oxidants and antibiotics. Mol Microbiol 47:1723–1732

    Article  PubMed  CAS  Google Scholar 

  • Buchmeier NA, Newton GL, Fahey RC (2006) A mycothiol synthase mutant of Mycobacterium tuberculosis has an altered thiol-disulfide content and limited tolerance to stress. J Bacteriol 188:6245–6252

    Article  PubMed  CAS  Google Scholar 

  • Bull AT, Stach JE (2007) Marine actinobacteria: new opportunities for natural product search and discovery. Trends Microbiol 15:491–499

    Article  PubMed  CAS  Google Scholar 

  • Bull AT, Stach JE, Ward AC, Goodfellow M (2005) Marine actinobacteria: perspectives, challenges, future directions. Antonie Van Leeuwenhoek 87:65–79

    Article  Google Scholar 

  • Bzymek KP, Newton GL, Ta P, Fahey RC (2007) Mycothiol import by Mycobacterium smegmatis and function as a resource for metabolic precursors and energy production. J Bacteriol 189:6796–6805

    Article  PubMed  CAS  Google Scholar 

  • Dalle-Donne I, Rossi R, Giustarini D, Colombo R, Milzani A (2007) S-glutathionylation in protein redox regulation. Free Radic Biol Med 43:883–898

    Article  PubMed  CAS  Google Scholar 

  • Fahey RC, Newton GL (1987) Determination of low-molecular-weight thiols using monobromobimane fluorescent labeling and high-performance liquid chromatography. Methods Enzymol 143:85–96

    Article  PubMed  CAS  Google Scholar 

  • Fahey RC, Sundquist AR (1991) Evolution of glutathione metabolism. Adv Enzymol Relat Areas Mol Biol 64:1–53

    Article  PubMed  CAS  Google Scholar 

  • Fahey RC, Brown WC, Adams WB, Worsham MB (1978) Occurrence of glutathione in bacteria. J Bacteriol 133:1126–1129

    PubMed  CAS  Google Scholar 

  • Fenical W, Jensen PR (2006) Developing a new resource for drug discovery: marine actinomycete bacteria. Nat Chem Biol 2:666–673

    Article  PubMed  CAS  Google Scholar 

  • Feling RH, Buchanan GO, Mincer TJ, Kauffman CA, Jensen PR, Fenical W (2003) Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angew Chem Int Ed Engl 42:355–357

    Article  PubMed  CAS  Google Scholar 

  • Fiedler HP, Bruntner C, Bull AT, Ward AC, Goodfellow M, Potterat O, Puder C, Mihm G (2005) Marine actinomycetes as a source of novel secondary metabolites. Antonie Van Leeuwenhoek 87:37–42

    Article  PubMed  CAS  Google Scholar 

  • Ghezzi P (2005) Regulation of protein function by glutathionylation. Free Radic Res 39:573–580

    Article  PubMed  CAS  Google Scholar 

  • Hand CE, Honek JF (2005) Biological chemistry of naturally occurring thiols of microbial and marine origin. J Nat Prod 68:293–308

    Article  PubMed  CAS  Google Scholar 

  • Hurd TR, Costa NJ, Dahm CC, Beer SM, Brown SE, Filipovska A, Murphy MP (2005) Glutathionylation of mitochondrial proteins. Antioxid Redox Signal 7:999–1010

    Article  PubMed  CAS  Google Scholar 

  • Jardine MA, Spies HS, Nkambule CM, Gammon DW, Steenkamp DJ (2002) Synthesis of mycothiol, 1D-1-O-(2-[N-acetyl-L-cysteinyl]amino-2-deoxy-alpha-D-glucopyranosyl)-myo-inositol, principal low molecular mass thiol in the actinomycetes. Bioorg Med Chem 10:875–881

    Article  PubMed  CAS  Google Scholar 

  • Jensen PR, Gontang E, Mafnas C, Mincer TJ, Fenical W (2005a) Culturable marine actinomycete diversity from tropical Pacific Ocean sediments. Environ Microbiol 7:1039–1048

    Article  PubMed  Google Scholar 

  • Jensen PR, Mincer TJ, Williams PG, Fenical W (2005b) Marine actinomycete diversity and natural product discovery. Antonie Van Leeuwenhoek 87:43–48

    Article  PubMed  CAS  Google Scholar 

  • Jensen PR, Williams PG, Oh DC, Zeigler L, Fenical W (2007) Species-specific secondary metabolite production in marine actinomycetes of the genus Salinispora. Appl Environ Microbiol 73:1146–1152

    Article  PubMed  CAS  Google Scholar 

  • Koburger T, Weibezahn J, Bernhardt J, Homuth G, Hecker M (2005) Genome-wide mRNA profiling in glucose starved Bacillus subtilis cells. Mol Genet Genomics 274:1–12

    Article  PubMed  CAS  Google Scholar 

  • Koledin T, Newton GL, Fahey RC (2002) Identification of the mycothiol synthase gene (mshD) encoding the acetyltransferase producing mycothiol in actinomycetes. Arch Microbiol 178:331–337

    Article  PubMed  CAS  Google Scholar 

  • Kwon HC, Kauffman CA, Jensen PR, Fenical W (2006) Marinomycins A-D, antitumor-antibiotics of a new structure class from a marine actinomycete of the recently discovered genus “marinispora”. J Am Chem Soc 128:1622–1632

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Rosazza JP (2004) First total synthesis of mycothiol and mycothiol disulfide. Org Lett 6:365–368

    Article  PubMed  CAS  Google Scholar 

  • Maldonado LA, Fenical W, Jensen PR, Kauffman CA, Mincer TJ, Ward AC, Bull AT, Goodfellow M (2005) Salinispora arenicola gen. nov., sp. nov. and Salinispora tropica sp. nov., obligate marine actinomycetes belonging to the family Micromonosporaceae. Int J Syst Evol Microbiol 55:1759–1766

    Article  PubMed  CAS  Google Scholar 

  • Masip L, Veeravalli K, Georgiou G (2006) The many faces of glutathione in bacteria. Antioxid Redox Signal 8:753–762

    Article  PubMed  CAS  Google Scholar 

  • Mincer TJ, Jensen PR, Kauffman CA, Fenical W (2002) Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl Environ Microbiol 68:5005–5011

    Article  PubMed  CAS  Google Scholar 

  • Newton GL, Fahey RC (1995) Determination of biothiols by bromobimane labeling and high-performance liquid chromatography. Methods Enzymol 251:148–166

    Article  PubMed  CAS  Google Scholar 

  • Newton GL, Fahey RC (2002) Mycothiol biochemistry. Arch Microbiol 178:388–394

    Article  PubMed  CAS  Google Scholar 

  • Newton GL, Fahey RC, Cohen G, Aharonowitz Y (1993) Low molecular weight thiols in streptomycetes and their potential role as antioxidants. J Bacteriol 175:2734–2742

    PubMed  CAS  Google Scholar 

  • Newton GL, Bewley CA, Dwyer TJ, Horn R, Aharonowitz Y, Cohen G, Davies J, Faulkner DJ, Fahey RC (1995) The structure of U17 isolated from Streptomyces clavuligerus and its properties as an antioxidant thiol. Eur J Biochem 230:821–825

    Article  PubMed  CAS  Google Scholar 

  • Newton GL, Arnold K, Price MS, Sherrill C, delCardayré SB, Aharonowitz Y, Cohen G, Fahey RC, Davis C (1996) Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes. J Bacteriol 178:1990–1995

    PubMed  CAS  Google Scholar 

  • Newton GL, Unson MD, Anderberg SJ, Aguilera JA, Oh NN, delCardayré SB, Davies J, Av-Gay Y, Fahey RC (1999) Characterization of a Mycobacterium smegmatis mutant defective in 1-D-myo-inosityl-2-amino-2-deoxy-alpha-D-glucopyranoside and mycothiol biosynthesis. Biochem Biophys Res Commun 255:239–244

    Article  PubMed  CAS  Google Scholar 

  • Newton GL, Av-Gay Y, Fahey RC (2000a) N-Acetyl-1-D-myo-inosityl-2-amino-2-deoxy-α-D-glucopyranoside deacetylase (MshB) is a key enzyme in mycothiol biosynthesis. J Bacteriol 182:6958–6963

    Article  PubMed  CAS  Google Scholar 

  • Newton GL, Av-Gay Y, Fahey RC (2000b) A novel mycothiol-dependent detoxification pathway in mycobacteria involving mycothiol S-conjugate amidase. Biochemistry 39:10739–10746

    Article  PubMed  CAS  Google Scholar 

  • Newton GL, Koledin T, Gorovitz B, Rawat M, Fahey RC, Av-Gay Y (2003) The glycosyltransferase gene encoding the enzyme catalyzing the first step of mycothiol biosynthesis (mshA). J Bacteriol 185:3476–3479

    Article  PubMed  CAS  Google Scholar 

  • Newton GL, Ta P, Fahey RC (2005) A mycothiol synthase mutant of Mycobacterium smegmatis produces novel thiols and has an altered thiol redox status. J Bacteriol 187:7309–7316

    Article  PubMed  CAS  Google Scholar 

  • Newton GL, Ta P, Bzymek K, Fahey RC (2006) Biochemistry of the initial steps of mycothiol biosynthesis. J Biol Chem 281:33910–33920

    Article  PubMed  CAS  Google Scholar 

  • Nicholas GM, Kovac P, Bewley CA (2002) Total synthesis and proof of structure of mycothiol bimane. J Am Chem Soc 124:3492–3493

    Article  PubMed  CAS  Google Scholar 

  • Pandey AK, Sassetti CM (2008) Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci USA 105:4376–4380

    Article  PubMed  CAS  Google Scholar 

  • Park J-H, Roe J-H (2008) Mycothiol regulates and is regulated by a thiol-specific anti-sigma factor RsrA and sigmaR in Streptomyces coelicolor. Mol Microbiol 68:861–870

    Article  PubMed  CAS  Google Scholar 

  • Patel MP, Blanchard JS (2001) Mycobacterium tuberculosis mycothione reductase: pH dependence of the kinetic parameters and kinetic isotope effects. Biochemistry 40:3119–3126

    Google Scholar 

  • Rawat M, Newton GL, Ko M, Martinez GJ, Fahey RC, Av-Gay Y (2002) Mycothiol-deficient Mycobacterium smegmatis mutants are hypersensitive to alkylating agents, free radicals and antibiotics. Antimicrob Agents Chemother 46:3348–3355

    Article  PubMed  CAS  Google Scholar 

  • Rawat M, Uppal M, Newton G, Steffek M, Fahey RC, Av-Gay Y (2004) Targeted mutagenesis of the Mycobacterium smegmatis mca gene, encoding a mycothiol-dependent detoxification protein. J Bacteriol 186:6050–6058

    Article  PubMed  CAS  Google Scholar 

  • Sareen D, Steffek M, Newton GL, Fahey RC (2002) ATP-dependent L-cysteine:1D-myo-inosityl 2-amino-2-deoxy-α-D-glucopyranoside ligase, mycothiol biosynthesis enzyme MshC, is related to class I cysteinyl-tRNA synthetases. Biochemistry 41:6885–6890

    Article  PubMed  CAS  Google Scholar 

  • Sareen D, Newton GL, Fahey RC, Buchmeier NA (2003) Mycothiol is essential for growth of Mycobacterium tuberculosis Erdman. J Bacteriol 185:6736–6740

    Article  PubMed  CAS  Google Scholar 

  • Steenkamp DJ, Vogt RN (2004) Preparation and utilization of a reagent for the isolation and purification of low-molecular-mass thiols. Anal Biochem 325:21–27

    Article  PubMed  CAS  Google Scholar 

  • Steffek M, Newton GL, Av-Gay Y, Fahey RC (2003) Characterization of Mycobacterium tuberculosis mycothiol S-conjugate amidase. Biochemistry 42:12067–12076

    Article  PubMed  CAS  Google Scholar 

  • Udwary DW, Zeigler L, Asolkar RN, Singan V, Lapidus A, Fenical W, Jensen PR, Moore BS (2007) Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proc Natl Acad Sci USA 104:10376–10381

    Article  PubMed  CAS  Google Scholar 

  • Unson MD, Newton GL, Davis C, Fahey RC (1998) An immunoassay for the detection and quantitative determination of mycothiol. J Immunol Methods 214:29–39

    Article  PubMed  CAS  Google Scholar 

  • Vetting MW, Yu M, Rendle PM, Blanchard JS (2006) The substrate-induced conformational change of Mycobacterium tuberculosis mycothiol synthase. J Biol Chem 281:2795–2802

    Article  PubMed  CAS  Google Scholar 

  • Walsh C (2003) Antibiotics: actions, origins, resistance. ASM Press, Washington, DC

    Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant AI49174 from the National Institute of Allergy and Infectious Diseases and grant MCB-0235705 from the National Science Foundation to RCF. Additional support was provided from the NIH, National Cancer Institute, under grant CA-44848 (to WF), and in part by the National Sea Grant College Program of the US Department of Commerce’s National Oceanic and Atmospheric Administration under NOAA Grant # NA040AR4170038, project # R/MP-96, through the California Sea Grant College Program; and in part by the California State Resources Agency to WF. The views expressed herein do not necessarily reflect the views of any of those organizations. We thank Nancy Buchmeier for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Fahey.

Additional information

Communicated by Jean-Luc Pernodet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newton, G.L., Jensen, P.R., MacMillan, J.B. et al. An N-acyl homolog of mycothiol is produced in marine actinomycetes. Arch Microbiol 190, 547–557 (2008). https://doi.org/10.1007/s00203-008-0405-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-008-0405-3

Keywords

Navigation