Skip to main content
Log in

Genetic analysis of phenylacetic acid catabolism in Arthrobacter oxydans CECT386

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Arthrobacteroxydans CECT386 is a Gram-positive bacterium able to use either phenylacetic acid or phenylacetaldehyde as the sole carbon and energy source for aerobic growth. Genes responsible for the catabolism of these compounds have been located at two chromosomal regions and were organized in one isolated paaN gene and two putative paa operons, one consisting of the paaD, paaF, tetR and prot genes, and one consisting of the paaG, paaH, paaI, paaJ, paaK and paaB genes. The identity of the paaF and paaN genes was supported by functional complementation experiments. A comparison with the paa catabolic genes and/or gene clusters of other bacteria that degrade these aromatic compounds is presented. The results of this study broaden the knowledge regarding the range of metabolic potential of this strain and eventually make it attractive for environmental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PAA:

Phenylacetic acid

PA-CoA:

Phenylacetyl-coenzyme A

IPCR:

Inverted PCR

RT-PCR:

Reverse transcription PCR

References

  • Alonso S, Bartolomé-Martín D, del Álamo M, Díaz E, García JL, Perera J (2003) Genetic characterization of the styrene lower catabolic pathway of Pseudomonas sp. strain Y2. Gene 319:71–83

    Article  PubMed  CAS  Google Scholar 

  • Bartolomé-Martín D, Martínez-García E, Mascaraque V, Rubio J, Perera J, Alonso S (2004) Characterization of a second functional gene cluster for the catabolism of phenylacetic acid in Pseudomonas sp. strain Y2. Gene 341:167–179

    Article  PubMed  CAS  Google Scholar 

  • Casellas M, Grifoll M, Bayona JM, Solanas AM (1997) New metabolites in the degradation of fluorene by Arthrobacter sp. strain F101. Appl Environ Microbiol 63:819–826

    PubMed  CAS  Google Scholar 

  • Di Gennaro P, Ferrara S, Ronco I, Galli E, Sello G, Papacchini M, Bestetti G (2007) Styrene lower catabolic pathway in Pseudomonas fluorescens ST: identification and characterization of genes for phenylacetic acid degradation. Arch Microbiol 188:117–125

    Article  PubMed  CAS  Google Scholar 

  • Fernández C, Ferrández A, Miñambres B, Díaz E, García JL (2006) Genetic characterization of the phenylacetyl-coenzyme A oxygenase from the aerobic phenylacetic acid degradation pathway of Escherichia coli. Appl Environ Microbiol 72:7422–7426

    Article  PubMed  CAS  Google Scholar 

  • Ferrández A, Miñambres B, García B, Olivera ER, Luengo JM, García JL, Díaz E (1998) Catabolism of phenylacetic acid in Escherichia coli. Characterization of a new aerobic hybrid pathway. J Biol Chem 273:25974–25986

    Article  PubMed  Google Scholar 

  • Flamm RK, Hinrichs DJ, Thomashow MF (1984) Introduction of pAM beta 1 into Listeria monocytogenes by conjugation and homology between native L. monocytogenes plasmids. Infect Immun 44:157–161

    PubMed  CAS  Google Scholar 

  • Ganas P, Mihasan M, Igloi GL, Brandsch R (2007) A two-component small multidrug resistance pump functions as a metabolic valve during nicotine catabolism by Arthrobacter nicotinovorans. Microbiology 153:1546–1555

    Article  PubMed  CAS  Google Scholar 

  • García B, Olivera ER, Miñambres B, Carnicero D, Muniz C, Naharro G, Luengo JM (2000) Phenylacetyl-coenzyme A is the true inducer of the phenylacetic acid catabolism pathway in Pseudomonas putida U. Appl Environ Microbiol 66:4575–4578

    Article  PubMed  Google Scholar 

  • Horton RN, Apel WA, Thompson VS, Sheridan PP (2006) Low temperature reduction of hexavalent chromium by a microbial enrichment consortium and a novel strain of Arthrobacter aurescens. BMC Microbiol 6:5

    Article  PubMed  CAS  Google Scholar 

  • Ismail W, El-Said Mohamed M, Wanner BL, Datsenko KA, Eisenreich W, Rohdich F, Bacher A, Fuchs G (2003) Functional genomics by NMR spectroscopy. Phenylacetate catabolism in Escherichia coli. Eur J Biochem 270:3047–3054

    Article  PubMed  CAS  Google Scholar 

  • Karigar C, Mahesh A, Nagenahalli M, Yun DJ (2006) Phenol degradation by immobilized cells of Arthrobacter citreus. Biodegradation 17:47–55

    Article  PubMed  CAS  Google Scholar 

  • Kodama Y, Yamamoto H, Amano N, Amachi T (1992) Reclassification of two strains of Arthrobacter oxydans and proposal of Arthrobacter nicotinovorans sp. nov. Int J Syst Bacteriol 42:234–239

    Article  PubMed  CAS  Google Scholar 

  • Luengo JM, García JL, Olivera ER (2001) The phenylacetyl-CoA catabolon: a complex catabolic unit with broad biotechnological applications. Mol Microbiol 39:1434–1442

    Article  PubMed  CAS  Google Scholar 

  • Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWeese-Scott C, Geer LY, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Marchler GH, Mullokandov M, Shoemaker BA, Simonyan V, Song JS, Thiessen PA, Yamashita RA, Yin JJ, Zhang D, Bryant SH (2005) CDD: a conserved domain database for protein classification. Nucleic Acids Res 33:D192–D196

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Pérez O, Moreno-Ruiz E, Floriano B, Santero E (2004) Regulation of tetralin biodegradation and identification of genes essential for expression of thn operons. J Bacteriol 186:6101–6109

    Article  PubMed  CAS  Google Scholar 

  • Megharaj M, Avudainayagam S, Naidu R (2003) Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Curr Microbiol 47:51–54

    Article  PubMed  CAS  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor, New York

    Google Scholar 

  • Mohamed ME, Ismail W, Heider J, Fuchs G (2002) Aerobic metabolism of phenylacetic acids in Azoarcus evansii. Arch Microbiol 178:180–192

    Article  CAS  Google Scholar 

  • Mongodin EF, Shapir N, Daugherty SC, Deboy RT, Emerson JB, Shvartzbeyn A, Radune D, Vamathevan J, Riggs F, Grinberg V, Khouri H, Wackett LP, Nelson KE, Sadowsky MJ (2006) Secrets of soil survival revealed by the genome sequence of Arthrobacter aurescens TC1. PLoS Genet 2:e214

    Article  PubMed  CAS  Google Scholar 

  • Navarro-Llorens JM, Patrauchan MA, Stewart GR, Davies JE, Eltis LD, Mohn WW (2005) Phenylacetate catabolism in Rhodococcus sp. strain RHA1: a central pathway for degradation of aromatic compounds. J Bacteriol 187:4497–4504

    Article  PubMed  CAS  Google Scholar 

  • Nogales J, Macchi R, Franchi F, Barzaghi D, Fernández C, García JL, Bertoni G, Díaz E (2007) Characterization of the last step of the aerobic phenylacetic acid degradation pathway. Microbiology 153:357–365

    Article  PubMed  CAS  Google Scholar 

  • Nordin K, Unell M, Jansson JK (2005) Novel 4-chlorophenol degradation gene cluster and degradation route via hydroxyquinol in Arthrobacter chlorophenolicus A6. Appl Environ Microbiol 71:6538–6544

    Article  PubMed  CAS  Google Scholar 

  • Ochman H, Gerber AS, Hartl DL (1988) Genetic applications of an inverse polymerase chain reaction. Genetics 120:621–623

    PubMed  CAS  Google Scholar 

  • Olivera ER, Miñambres B, García B, Muniz C, Moreno MA, Ferrández A, Díaz E, García JL, Luengo JM (1998) Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: the phenylacetyl-CoA catabolon. Proc Natl Acad Sci USA 95:6419–6424

    Article  PubMed  CAS  Google Scholar 

  • Ramos JL, Martínez-Bueno M, Molina-Henares AJ, Teran W, Watanabe K, Zhang X, Gallegos MT, Brennan R, Tobes R (2005) The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 69:326–356

    Article  PubMed  CAS  Google Scholar 

  • Rost R, Haas S, Hammer E, Herrmann H, Burchhardt G (2002) Molecular analysis of aerobic phenylacetate degradation in Azoarcus evansii. Mol Genet Genomics 267:656–663

    Article  PubMed  CAS  Google Scholar 

  • Ruan A, Min H, Zhu W (2006) Studies on biodegradation of nicotine by Arthrobacter sp. strain HF-2. J Environ Sci Health B 41:1159–1170

    PubMed  CAS  Google Scholar 

  • Sajjaphan K, Shapir N, Wackett LP, Palmer M, Blackmon B, Tomkins J, Sadowsky MJ (2004) Arthrobacter aurescens TC1 atrazine catabolism genes trzN, atzB, and atzC are linked on a 160-kilobase region and are functional in Escherichia coli. Appl Environ Microbiol 70:4402–4407

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor, New York

    Google Scholar 

  • Seto M, Masai E, Ida M, Hatta T, Kimbara K, Fukuda M, Yano K (1995) Multiple polychlorinated biphenyl transformation systems in the gram-positive bacterium Rhodococcus sp. strain RHA1. Appl Environ Microbiol 61:4510–4513

    PubMed  CAS  Google Scholar 

  • Velasco A, Alonso S, García JL, Perera J, Díaz E (1998) Genetic and functional analysis of the styrene catabolic cluster of Pseudomonas sp. strain Y2. J Bacteriol 180:1063–1071

    PubMed  CAS  Google Scholar 

  • Wauters G, Charlier J, Janssens M, Delmee M (2000) Identification of Arthrobacter oxydans, Arthrobacter luteolus sp. nov. and Arthrobacter albus sp. nov., isolated from human clinical specimens. J Clin Microbiol 38:2412–2415

    PubMed  CAS  Google Scholar 

  • Woodcock DM, Crowther PJ, Doherty J, Jefferson S, DeCruz E, Noyer-Weidner M, Smith SS, Michael MZ, Graham MW (1989) Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res 17:3469–3478

    Article  PubMed  CAS  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridisation prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Spanish Ministerio de Ciencia y Tecnología (BIO 2003-05309-C04-03) and from the Universidad Complutense de Madrid (PR1/03-11648). We thank David Bartolomé-Martín for the Pseudomonas sp. strain Y2 paaF probe and Teresa del Peso-Santos and Victoria Mascaraque for the paaN mutant of Pseudomonas sp. strain Y2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julián Perera.

Additional information

Communicated by Jean-Luc Pernodet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navarro-Llorens, J.M., Drzyzga, O. & Perera, J. Genetic analysis of phenylacetic acid catabolism in Arthrobacter oxydans CECT386. Arch Microbiol 190, 89–100 (2008). https://doi.org/10.1007/s00203-008-0370-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-008-0370-x

Keywords

Navigation