Skip to main content
Log in

Validation of a Tn5 transposon mutagenesis system for Gluconacetobacter diazotrophicus through characterization of a flagellar mutant

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

An Erratum to this article was published on 11 January 2008

Abstract

Gluconacetobacter diazotrophicus is a nitrogen-fixing bacterium, which was originally isolated from the interior of sugarcane plants. The genome of strain PAL5 of G. diazotrophicus has been completely sequenced and a next step is the functional characterization of its genes. The aim of this study was to establish an efficient mutagenesis method, using the commercial Tn5 transposon EZ::Tn5™<KAN-2>Tnp Transposome™ (Epicentre). Up to 1 × 106 mutants per microgram of transposome were generated in a single electroporation experiment. Insertion-site flanking sequences were amplified by inverse PCR and sequenced for 31 mutants. For ten of these mutants, both insertion flanks could be identified, confirming the 9 bp duplication that is typical for Tn5 transposition. Insertions occurred in a random fashion and were genetically stable for at least 50 generations. One mutant had an insertion in a homolog of the flagellar gene flgA, and was therefore predicted to be affected in flagella-dependent traits and used to validate the applied mutagenesis methodology. This mutant lacked flagella and was non-motile on soft agar. Interestingly, it was also strongly affected in the ability to form biofilm on glass wool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Tz:

Transposon-like DNA element from EZ::Tn5™<KAN-2>Tnp Transposome™

IPCR:

Inverse PCR

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Baldani JI, Baldani VL (2005) History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. An Acad Bras Cienc 77:549–579

    PubMed  CAS  Google Scholar 

  • Bastián F, Cohen A, Piccoli P, Luna V, Baraldi R, Bottini R (1998) Production of indole-3-acetic acid and gibberellins A(1) and A(3) by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul 24:7–11

    Article  Google Scholar 

  • Boddey RM, Urquiaga S, Alves BJR, Reis V (2003) Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil 252:139–149

    Article  CAS  Google Scholar 

  • Bretz J, Losada L, Lisboa K, Hutcheson SW (2002) Lon protease functions as a negative regulator of type III protein secretion in Pseudomonas syringae. Mol Microbiol 45:397–409

    Article  PubMed  CAS  Google Scholar 

  • Cavalcante JJV, Vargas C, Nogueira EM, Vinagre F, Schwarcz K, Baldani JI, Ferreira PCG, Hemerly AS (2007) Members of the ethylene signalling pathway are regulated in sugarcane during the association with nitrogen-fixing endophytic bacteria. J Exp Bot 58:673–686

    Article  PubMed  CAS  Google Scholar 

  • Cavalcante VA, Döbereiner J (1988) A new acid tolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil 108:23–31

    Article  Google Scholar 

  • Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422

    Article  PubMed  CAS  Google Scholar 

  • Fuentes-Ramírez LE, Jiménez-Salgado T, Abarca-Ocampo IR, Caballero-Mellado J (1993) Acetobacter diazotrophicus, an indolacetic acid producing bacterium isolated from sugarcane cultivars in Mexico. Plant Soil 154:145–150

    Article  Google Scholar 

  • Fujishige NA, Kapadia NN, De Hoff PL, Hirsch AM (2006) Investigations of Rhizobium biofilm formation. FEMS Microbiol Ecol 56:195–206

    Article  PubMed  CAS  Google Scholar 

  • Gillis K, Kersters K, Hoste B, Janssens D, Kroppenstedt RM, Stephan MP, Teixeira KRS, Döbereiner J, De Ley J (1989) Acetobacter diazotrophicus sp. Nov., a nitrogen-fixing acetic acid bacterium associated with sugarcane. Int J Syst Bact 39:361–364

    Article  Google Scholar 

  • Goryshin IY, Jendrisak J, Hoffman LM, Reznikoff WS (2000) Insertional transposon mutagenesis by electroporation of released Tn5 transposition complexes. Nat Biotechnol 18:97–100

    Article  PubMed  CAS  Google Scholar 

  • Guilhabert MR, Hoffman LM, Mills DA, Kirkpatrick BC (2001) Transposon mutagenesis of Xylella fastidiosa by electroporation of Tn5 synaptic complexes. Mol Plant Microbe Interact 14:701–706

    Article  PubMed  CAS  Google Scholar 

  • Jacobs MA, Alwood A, Thaipisuttikul I, Spencer D, Haugen E, Ernst S, Will O, Kaul R, Raymond C, Levy R, Chun-Rong L, Guenthner D, Bovee D, Olson MV, Manoil C (2003) Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 100:14339–14344

    Article  PubMed  CAS  Google Scholar 

  • Koide T, Neto JFS, Gomes SL, Marques MV (2004) Insertional transposon mutagenesis in the Xylella fastidiosa citrus variegated chlorosis strain with transposome. Curr Microbiol 48:247–250

    Article  PubMed  CAS  Google Scholar 

  • Lauriano CM, Barker JR, Nano FE, Arulanandam BP, Klose KE (2003) Allelic exchange in Francisella tularensis using PCR products. FEMS Micorbiol Lett 229:195–202

    Article  CAS  Google Scholar 

  • Lee S, Flores-Encarnación M, Contreras-Zentella M, Garcia-Flores L, Escamilla JE, Kennedy C (2004) Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome c biogenesis genes. J Bacteriol 186:5384–5391

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Reth A, Meletzus D, Sevilla M, Kennedy C (2000) Characterization of a major cluster of nif, fix and associated genes in a sugarcane endophyte, Acetobacter diazotrophicus. J Bacteriol 182:7088–7091

    Article  PubMed  CAS  Google Scholar 

  • Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, Schultz J, Ponting CP, Bork P (2004) SMART 4.0: towards genomic data integration. Nucleic Acids Res 32:D142–D144

    Article  PubMed  CAS  Google Scholar 

  • Lima E, Boddey RM, Döbereiner J (1987) Quantification of biological nitrogen fixation associated with sugar cane using a 15N aided balance. Soil Biol Biochem 19:165–170

    Article  CAS  Google Scholar 

  • Li Y, Hao G, Galvani CD, Meng Y, Fuente L, Hoch HC, Burr TJ (2007) Type I and type IV pili of Xylella fastidiosa affect twitching motility, biofilm formation and cell–cell aggregation. Microbiology 153:719–726

    Article  PubMed  CAS  Google Scholar 

  • Martin VJ, Mohn WW (1999) An alternative inverse PCR (IPCR) method to amplify DNA sequences flanking Tn5 transposon insertions. J Microbiol Meth 35:163–166

    Article  CAS  Google Scholar 

  • McKinnon RD, Waye JS, Bautista DS, Graham FL (1985) Nonrandom insertion of Tn5 into cloned human adenovirus DNA. Gene 40:31–38

    Article  PubMed  CAS  Google Scholar 

  • Nambu T, Kutsukake K (2000) The Salmonella FlgA protein, a putative periplasmic chaperone essential for flagellar P ring formation. Microbiology 146:1171–1178

    PubMed  CAS  Google Scholar 

  • O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304

    Article  PubMed  CAS  Google Scholar 

  • Perlova O, Nawroth R, Zellermann E-M, Meletzus D (2002) Isolation and characterization of the glnD gene of Gluconacetobacter diazotrophicus, encoding a putative uridylyltransferase/uridylyl-removing enzyme. Gene 297:159–168

    Article  PubMed  CAS  Google Scholar 

  • Perlova O, Ureta A, Nordlund S, Meletzus D (2003) Identification of three genes encoding PII-like proteins in Gluconacetobacter diazotrophicus: studies of their role(s) in the control of nitrogen fixation. J Bacteriol 185:5854–5861

    Article  PubMed  CAS  Google Scholar 

  • Pratt LA, Kolter R (1998) Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293

    Article  PubMed  CAS  Google Scholar 

  • Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U (2005) Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol 23:195–200

    Article  PubMed  CAS  Google Scholar 

  • Reis VM, Olivares FL, Döbereiner J (1994) Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its endophytic habitat. World J Microbiol Biotechnol 10:401–405

    Article  Google Scholar 

  • Rocha FR, Papini-Terzi FS, Nishiyama Jr MY, Vêncio RZN, Vicentini R, Duarte RDC, de Rosa Jr VE, Vinagre F, Barsalobres C, Medeiros AH, Rodrigues FA, Ulian EC, Zingaretti SM, Galbiatti JÁ, Almeida RS, Figueira AVO, Hemerly AS, Silva-Filho MC, Menossi M, Souza GM (2007) Signal transduction-related responses to phytohormones and environmental challenges in sugarcane. BMC Genomics 8:71

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues Neto j, Malavolta Jr VA, Victor O (1986) Meio simples para o isolamento e cultivo de Xanthomonas campestris pv. citri tipo B. Sum Phytol 12:16

    Google Scholar 

  • Sambrook J, Fritsh EF, Maniatis T (1989) Molecular cloning––a laboratory manual. 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA 95:5857–5864

    Article  PubMed  CAS  Google Scholar 

  • Sevilla M, Burris RH, Gunapala N, Kennedy C (2001) Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and mutant strains. Mol Plant Microbe Interact 14:358–366

    Article  PubMed  CAS  Google Scholar 

  • Simon R, Quandt J, Klipp W (1989) New derivatives of transposon Tn5 suitable for mobilization of replicons, generation of operon fusions and induction of genes in Gram-negative bacteria. Gene 80:161–169

    Article  PubMed  CAS  Google Scholar 

  • Sun Q, Wu W, Qian W, Hu J, Fang R, He C (2003) High-quality mutant libraries of Xanthomonas oryzae pv. oryzae and X. campestris generated by an efficient transposon mutagenesis system. FEMS Microbiol Lett 226:145–150

    Article  PubMed  CAS  Google Scholar 

  • Teixeira KRS, Wülling M, Morgan T, Galler R, Zellermann E-M, Baldani JI, Kennedy C, Meletzus D (1999) Molecular analysis of the chromosomal region encoding the nifA and nifB genes of Acetobacter diazotrophicus. FEMS Microbiol Lett 176:301–309

    Article  CAS  Google Scholar 

  • Ureta A, Nordlund S (2001) Glutamine synthase from Acetobacter diazotrophicus: properties and regulation. FEMS Microbiol Lett 202:177–180

    Article  PubMed  CAS  Google Scholar 

  • Vinagre F, Vargas C, Schwarcz K, Cavalcante J, Nogueira EM, Baldani JI, Ferreira PCG, Hemerly AS (2006) SHR5: a novel plant receptor kinase involved in plant-N2-fixing endophytic bacteria association. J Exp Bot 57:559–569

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Geraldo B. da Cruz for his help with electron microscopy and Kátia R.S. Teixeira and Marcia S. Vidal for helpful suggestions. We are grateful to Robert M. Boddey for English corrections and to Stefan Schwab for helpful suggestions and critically reading the manuscript. This study was financially supported by Pronex/Faperj (project number E-26/171.208/2003), CNPq (project number 50.6355/2004-7) and Instituto Milênio (process number 420274/2005-7). The first author received a CNPq fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José I. Baldani.

Additional information

Communicated by Erko Stackebrandt.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00203-007-0344-4

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM (TXT 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rouws, L.F.M., Simões-Araújo, J.L., Hemerly, A.S. et al. Validation of a Tn5 transposon mutagenesis system for Gluconacetobacter diazotrophicus through characterization of a flagellar mutant. Arch Microbiol 189, 397–405 (2008). https://doi.org/10.1007/s00203-007-0330-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-007-0330-x

Keywords

Navigation