Skip to main content
Log in

Lon protease promotes survival of Escherichia coli during anaerobic glucose starvation

  • Short Communication
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In Escherichia coli, Lon is an ATP-dependent protease which degrades misfolded proteins and certain rapidly-degraded regulatory proteins. Given that oxidatively damaged proteins are generally degraded rather than repaired, we anticipated that Lon deficient cells would exhibit decreased viability during aerobic, but not anaerobic, carbon starvation. We found that the opposite actually occurs. Wild-type and Lon deficient cells survived equally well under aerobic conditions, but Lon deficient cells died more rapidly than the wild-type under anaerobiosis. Aerobic induction of the Clp family of ATP-dependent proteases could explain these results, but direct quantitation of Clp protein established that its level was not affected by Lon deficiency and overexpression of Clp did not rescue the cells under anaerobic conditions. We conclude that the Lon protease supports survival during anaerobic carbon starvation by a mechanism which does not depend on Clp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Akerlund T, Nordstrom K, Bernander R (1995) Analysis of cell size and DNA content in exponentially growing and stationary-phase batch cultures of Escherichia coli. J Bacteriol 177:6791–6797

    PubMed  CAS  Google Scholar 

  • Budisa N, Steipe B, Demange P, Eckerskorn C, Kellermann J, Huber R (1995) High-level biosynthetic substitution of methionine in proteins by its analogs 2-aminohexanoic acid, selenomethionine, telluromethionine and ethionine in Escherichia coli. Eur J Biochem 230:788–796

    Article  PubMed  CAS  Google Scholar 

  • Christensen SK, Mikkelsen M, Pedersen K, Gerdes K (2001) RelE, a global inhibitor of translation, is activated during nutritional stress. Proc Natl Acad Sci USA 98:14328–14333

    Article  PubMed  CAS  Google Scholar 

  • Chung CH, Goldberg AL (1981) The product of the lon (capR) gene in Escherichia coli is the ATP-dependent protease, protease La. Proc Natl Acad Sci USA 78:4931–4935

    Article  PubMed  CAS  Google Scholar 

  • Desnues B, Cuny C, Gregori G, Dukan S, Aguilaniu H, Nystrom T (2003) Differential oxidative damage and expression of stress defence regulons in culturable and non-culturable Escherichia coli cells. EMBO Rep 4:400–404

    Article  PubMed  CAS  Google Scholar 

  • Donch J, Greenberg J (1968) Ultraviolet sensitivity gene of Escherichia coli B. J Bacteriol 95:1555–1559

    PubMed  CAS  Google Scholar 

  • Dopazo A, Tormo A, Aldea M, Vicente M (1987) Structural inhibition and reactivation of Escherichia coli septation by elements of the SOS and TER pathways. J Bacteriol 169:1772–1776

    PubMed  CAS  Google Scholar 

  • Dougan DA, Reid BG, Horwich AL, Bukau B (2002) ClpS, a substrate modulator of the ClpAP machine. Mol Cell 9:673–683

    Article  PubMed  CAS  Google Scholar 

  • Dukan S, Nystrom T (1999) Oxidative stress defense and deterioration of growth-arrested Escherichia coli cells. J Biol Chem 274:26027–26032

    Article  PubMed  CAS  Google Scholar 

  • Gerdes K (2000) Toxin-antitoxin modules may regulate synthesis of macromolecules during nutritional stress. J Bacteriol 182:561–572

    Article  PubMed  CAS  Google Scholar 

  • Gottesman S (1996) Proteases and their targets in Escherichia coli. Annu Rev Genet 30:465–506

    Article  PubMed  CAS  Google Scholar 

  • Gottesman S (2003) Proteolysis in bacterial regulatory circuits. Annu Rev Cell Dev Biol 19:565–587

    Article  PubMed  CAS  Google Scholar 

  • Gottesman S, Maurizi MR (2001) Cell biology. Surviving starvation. Science 293:614–615

    Article  PubMed  CAS  Google Scholar 

  • Grune T, Merker K, Sandig G, Davies KJ (2003) Selective degradation of oxidatively modified protein substrates by the proteasome. Biochem Biophys Res Commun 305:709–718

    Article  PubMed  CAS  Google Scholar 

  • Higashitani A, Ishii Y, Kato Y, Koriuchi K (1997) Functional dissection of a cell-division inhibitor, SulA, of Escherichia coli and its negative regulation by Lon. Mol Gen Genet 254:351–357

    Article  PubMed  CAS  Google Scholar 

  • Katayama Y, Gottesman S, Pumphrey J, Rudikoff S, Clark WP, Maurizi MR (1988) The two-component, ATP-dependent Clp protease of Escherichia coli. Purification, cloning, and mutational analysis of the ATP-binding component. J Biol Chem 263:15226–15236

    PubMed  CAS  Google Scholar 

  • Kuroda A, Nomura K, Ohtomo R, Kato J, Ikeda T, Takiguchi N, Ohtake H, Kornberg A (2001) Role of inorganic polyphosphate in promoting ribosomal protein degradation by the Lon protease in E. coli. Science 293:705–708

    Article  PubMed  CAS  Google Scholar 

  • Laskowska E, Kuczynska-Wisnik D, Skorko-Glonek J, Taylor A (1996) Degradation by proteases Lon, Clp and HtrA, of Escherichia coli proteins aggregated in vivo by heat shock; HtrA protease action in vivo and in vitro. Mol Microbiol 22:555–571

    Article  PubMed  CAS  Google Scholar 

  • Maurizi MR (1992) Proteases and protein degradation in Escherichia coli. Experientia 48:178–201

    Article  PubMed  CAS  Google Scholar 

  • Maurizi MR, Clark WP, Katayama Y, Rudikoff S, Pumphrey J, Bowers B, Gottesman S (1990) Sequence and structure of Clp P, the proteolytic component of the ATP-dependent Clp protease of Escherichia coli. J Biol Chem 265:12536–12545

    PubMed  CAS  Google Scholar 

  • Miller JH (1992) A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Laboratory Press, Plainview

    Google Scholar 

  • Mizusawa S, Gottesman S (1983) Protein degradation in Escherichia coli: the lon gene controls the stability of sulA protein. Proc Natl Acad Sci USA 80:358–362

    Article  PubMed  CAS  Google Scholar 

  • Nystrom T (2004) Stationary-phase physiology. Annu Rev Microbiol 58:161–181

    Article  PubMed  Google Scholar 

  • Pedersen K, Christensen SK, Gerdes K (2002) Rapid induction and reversal of a bacteriostatic condition by controlled expression of toxins and antitoxins. Mol Microbiol 45:501–510

    Article  PubMed  CAS  Google Scholar 

  • Reeve CA, Bockman AT, Matin A (1984) Role of protein degradation in the survival of carbon-starved Escherichia coli and Salmonella typhimurium. J Bacteriol 157:758–763

    PubMed  CAS  Google Scholar 

  • Rosen R, Biran D, Gur E, Becher D, Hecker M, Ron EZ (2002) Protein aggregation in Escherichia coli: role of proteases. FEMS Microbiol Lett 207:9–12

    Article  PubMed  CAS  Google Scholar 

  • Schoemaker JM, Gayda RC, Markovitz A (1984) Regulation of cell division in Escherichia coli: SOS induction and cellular location of the sulA protein, a key to lon-associated filamentation and death. J Bacteriol 158:551–561

    PubMed  CAS  Google Scholar 

  • Singh SK, Maurizi MR (1994) Mutational analysis demonstrates different functional roles for the two ATP-binding sites in ClpAP protease from Escherichia coli. J Biol Chem 269:29537–29545

    PubMed  CAS  Google Scholar 

  • Stadtman ER, Levine RL (2003) Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25:207–218

    Article  PubMed  CAS  Google Scholar 

  • Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278:631–637

    Article  PubMed  CAS  Google Scholar 

  • Torres-Cabassa AS, Gottesman S (1987) Capsule synthesis in Escherichia coli K-12 is regulated by proteolysis. J Bacteriol 169:981–989

    PubMed  CAS  Google Scholar 

  • Weichart D, Querfurth N, Dreger M, Hengge-Aronis R (2003) Global role for ClpP-containing proteases in stationary-phase adaptation of Escherichia coli. J Bacteriol 185:115–125

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Michael R. Maurizi for his kind gifts of the E. coli K-12 strains, plasmids, and ClpP antibody and especially for helpful discussions and suggestions. This work was supported by the Intramural Research Program of the NIH (NHLBI and NIAID).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney L. Levine.

Additional information

Communicated by Jorge Membrillo-Hernandéz.

Shen Luo and Megan McNeill contributed equally to this research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, S., McNeill, M., Myers, T.G. et al. Lon protease promotes survival of Escherichia coli during anaerobic glucose starvation. Arch Microbiol 189, 181–185 (2008). https://doi.org/10.1007/s00203-007-0304-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-007-0304-z

Keywords

Navigation