Skip to main content
Log in

Spontaneous zygogenesis (Z-mating) in mecillinam-rounded bacteria

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In Escherichia coli the process of spontaneous zygogenesis (Z-mating), i.e. complete genetic mixing in the absence of a conjugative plasmid, was investigated further. Spontaneous-zygogenesis-promoting (Szp+) cells displayed strong clustering with each other and with ordinary F cells in the optimal cell density range for Z-mating. When induced to rounding by the drug mecillinam, they aggregated into large, dense, stainable syncytium-like cells leaving giant ghosts upon lysis. In Z-mating mixtures of mecillinam-treated cells, these giant cells co-purified with mating products as other cells died. Giant cells recovering from mecillinam treatment yielded monstrous, branching forms, whereas non-Szp+ coccal cells reverted to rods in one step, and some 29% of the colonies formed were identified as deriving from entities possessing two distinct genomes. Z-mating was examined between E. coli and a distantly related Serratia marcescens strain. In the presence of calcium, mecillinam-rounded cells of a stable non-complementing diploid hybrid with the E. coli phenotype segregated normally dividing cells of the Serratia form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achtman M, Morelli G, Schwuchow S (1978) Cell-cell interactions in conjugating Escherichia coli: role of f-pili and fate of mating aggregates. J Bacteriol 135:1053–1061

    PubMed  CAS  Google Scholar 

  • Bi E, Lutkenhaus J (1992) Isolation and characterization of fts alleles that affect septal morphology. J Bacteriol 174:5414–5423

    PubMed  CAS  Google Scholar 

  • Curtiss R (1964) A stable partial diploid strain of Escherichia coli. Genetics 50:679–694

    Google Scholar 

  • Elseviers D, Cunin R, Glansdorff N (1972) Control regions within the argECBH gene cluster of Escherichia coli K12. Mol Gen Genet 117:349–366

    PubMed  CAS  Google Scholar 

  • Goodell EW, Schwartz U (1975) Sphere-rod morphogenesis of Escherichia coli. J Gen Microbiol 86:201–209

    PubMed  CAS  Google Scholar 

  • Grandjean V, Le Hegarat F, Hirschbein L (1996) Prokaryotic model of epigenetic inactivation: chromosomal silencing in Bacillus subtilis fusion products. In: Russo V, Martiensen RA, Riggs AD (eds) Epigenetic mechanisms of gene regulation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 361–376

    Google Scholar 

  • Gratia JP (1962) Effect of multisite mutation to colicine resistance on recombination and segregation in E. coli K12. Nature 196:1337–1340

    Article  Google Scholar 

  • Gratia JP (1994) Ufr/s variation in Escherichia coli K12: a reversible double-mutation or alternate chromosome expression in non-complementing diploids? Res Microbiol 145:309–325

    Article  PubMed  CAS  Google Scholar 

  • Gratia JP (1997) Effects of Ca2+ cations on survival, growth and cell size of Serratia marcescens SMG40 exposed to mecillinam. Arch Physiol Biochem 105:347–357

    Article  CAS  Google Scholar 

  • Gratia JP (2005) Non complementing diploidy resulting from spontaneous zygogenesis in Escherichia coli. Microbiol 151:2947–2959

    Article  CAS  Google Scholar 

  • Gratia JP (2007) Spontaneous zygogenesis, a wide-ranging mating process in bacteria. Res Microbiol (in press)

  • Gratia JP, Thiry M (2003) Spontaneous zygogenesis in Escherichia coli, a form of true sexuality in prokaryotes. Microbiol 149:2571–2584

    Article  CAS  Google Scholar 

  • Grimont PAD, Grimont F (1978) The genus Serratia. Ann Rev Microbiol 32:221–248

    Article  CAS  Google Scholar 

  • James R, Haga JY, Pardee AB (1975) Inhibition of an early event in the cell division cycle of Escherichia coli by Fl-1060, an amidinopenicillanic acid. J Bacteriol 122:1283–1292

    PubMed  CAS  Google Scholar 

  • Lederberg J (1949) Aberrant heterozygotes in Escherichia coli. Proc Natl Acad Sci USA 35:178–184

    Article  PubMed  CAS  Google Scholar 

  • Lund F, Tybring L (1972) 6-B-amidinopenicillanic acids: a new group of antibiotics. Nature (Lond) New Biol 236:135–137

    CAS  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory. Cold Spring Harbor

    Google Scholar 

  • Ogg JE, Humphrey RD (1963) Small-cell segregants from a possibly homozygous diploid strain of Escherichia coli. J Bacteriol 85:801–807

    PubMed  CAS  Google Scholar 

  • Ogg JE, Zelle MR (1953) Isolation and characterization of a large cell possibly polyploid strains of Escherichia coli. J Bacteriol 74:477–484

    Google Scholar 

  • Spratt BG (1975) Distinct penicillin-binding proteins involved in division, elongation, and shape of Escherichia coli. Proc Natl Acad Sci USA 72:2999–3003

    Article  PubMed  CAS  Google Scholar 

  • Tyurin MV, Doroshenko VG, Oparina NYu (1997) Electrofusion of Escherichia coli cells. Membr Cell Biol 11:121–129

    PubMed  CAS  Google Scholar 

  • Wohlhieter JA, Gemski P, Baron LS (1975) Extensive segments of the Escherichia coli K12 chromosome in Proteus mirabilis diploids. Mol Gen Genet 139:93–101

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I am indebted to D. Dekegel for assistance in microscopy. I also warmly thank Dr C. Godard for hospitality in her laboratory. I deeply acknowledge the help of K. Broman with writing the manuscript. I thank N. Glansdorff for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Gratia.

Additional information

Communicated by Jorge Membrillo-Hernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gratia, JP. Spontaneous zygogenesis (Z-mating) in mecillinam-rounded bacteria. Arch Microbiol 188, 565–574 (2007). https://doi.org/10.1007/s00203-007-0277-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-007-0277-y

Keywords

Navigation