Skip to main content
Log in

Molecular characterization of Pseudomonas sp. LDC-5 involved in accumulation of poly 3-hydroxybutyrate and medium-chain-length poly 3-hydroxyalkanoates

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Polyhydroxyalkanoates (PHAs) are biological polyesters, of which, Short-Chain-Length-Medium-Chain-Length (SCL-MCL) PHA copolymers are important because of their wide range of applications. The present study focused on molecular characterization of Pseudomonas sp. LDC-5 that is identified as SCL-MCL producer. Phase contrast, fluorescent and electron microscopic observation confirmed the presence of PHA granules in Pseudomonas sp. LDC-5. PCR analysis indicated the presence of expected amplicon for SCL phaC gene (∼500 bp), MCL phaC1 with phaZ (∼1.3), and phaC2 with phaZ (∼1.5 kb). Sequence analysis of the PHA synthase gene of Pseudomonas sp. LDC-5 revealed significant differences in phaC1 and phaC2 which were further confirmed by recombinant studies. Recombinant Escherichia coli harboring the partial phaC1 gene was able to accumulate PHA, whereas E. coli with phaC2 did not accumulate PHA as verified by fold analysis, immunoblotting, Gas Chromatography (GC), Differential scanning calorimetry (DSC), and FTIR studies. The predicted theoretical three-dimensional structure revealed that PhaC1 is consistent with α/β hydrolase fold. Monomer composition showed the presence of monomer ranging from C4 to C12: 1 when glucose and sodium octanoate fed as the carbon source. DSC revealed melting temperature peak at 153.12°C and glass transition (Tg) peaks at −0.37°C. Thermogravimetric analysis revealed that the polymer was stable up to 276°C. Fourier Transform Infrared Spectroscopy (FT-IR) spectral analysis showed the PHA specific wave number at 1,739.67 and 1,161.07 cm−1. The potential of Pseudomonas sp. LDC-5 and its properties are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

3-D:

Three-dimensional

BCIP:

5-bromo-4-chloro-3-indolylphosphate

BLAST:

Basic local alignment search tool

EMBL:

European Molecular Biology Laboratory

EXPASY:

Expert Protein Analysis System

FASTA:

Fast Alignment Search Tool A

FT-IR:

Fourier transform infrared spectroscopy

GC:

Gas chromatography

MCL:

Medium chain length

NBT:

Nitro blue tetrazolium

PVDF:

Polyvinylidene difluoride

RMSD:

Root mean square deviation

SCL:

Short chain length

TEM:

Transmission electron microscopy

Tg :

Glass transition temperature (°C)

Tm :

Melting temperature (°C)

TrEMBL:

Translated EMBL

References

  • Abe H, Doi Y (2002) Side chain effect of second monomer units on crystalline morphology, thermal properties, and enzymatic degradability for random co polyesters of (R)-3-hydroxyalkanoic acids. Biomacromolecules 3:133–138

    Article  PubMed  CAS  Google Scholar 

  • Alexandrov NN, Go N (1994) Biological meaning, statistical significance, and classification of local spatial similarities in nonhomologous proteins. Protein Sci 3:866–875

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Amara AA, Rehm BHA (2003) Replacement of the catalytic nucleophile cysteine-296 by serine in classII Polyhydroxyalkanoates synthase from Pseudomonas aeruginosa-mediated synthesis of new polyester: identification of catalytic residues. Biochem J 374:413–421

    Article  PubMed  CAS  Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role and industrial uses of bacterial Polyhydroxyalkanoates. Microbiol Rev 54:450–472

    PubMed  CAS  Google Scholar 

  • Ashby RD, Solaiman DKY, Foglia TA (2002) The synthesis of short-and-medium-chain length poly (hydroxyalkanoate) mixtures from glucose or alkanoic acid-grown Pseudomonas oleovorans. J Ind Microbiol Biotechnol 28:147–153

    Article  PubMed  CAS  Google Scholar 

  • Ashby RD, Solaiman DKY, Foglia TA, Liu CK (2001) Glucose/lipid mixed substrates as a means of controlling the properties of medium chain length poly(hydroxyalkanoates). Biomacromolecules 2:211–216

    Article  PubMed  CAS  Google Scholar 

  • Asrar J, Valentin HE, Berger PA, Tran M, Padgette SR, Garbow JR (2002) Biosynthesis and properties of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) polymers. Biomacromolecules 3:1006–1012

    Article  PubMed  CAS  Google Scholar 

  • Brandl H, Knee EJ, Fuller RC, Gross RA, Lenz RW (1989) Ability of the phototrophic bacterium Rhodospirillum rubrum to produce polyesters. Int J Biol Macromol 11:49–55

    Article  PubMed  CAS  Google Scholar 

  • Braunegg G, Sonnleitner B, Lafferty RM (1978) A rapid gas chromatographic method for the determination of poly-β-hydroxybutyrate in microbial biomass. Eur J Appl Microiol 6:29–37

    Article  CAS  Google Scholar 

  • Castrignano T, De Meo PD, Cozzetto D, Talamo IG, Tramontano A (2006) The PMDB Protein Model Database. Nucleic Acids Res 34:306–309

    Article  CAS  Google Scholar 

  • Chen JU, Song G, Chen GQ (2006) A lower specificity PhaC2 synthase from Pseudomonas stutzeri catalyses the production of co polyesters consisting of short-chain-length and medium-chain-length 3-hydroxyalkanoates. Antonie van Leeuwenhoek 89:157–167

    Article  PubMed  CAS  Google Scholar 

  • Chen JY, Liu T, Zheng Z, Chen JC, Chen GQ (2004) Polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas stutzeri 1317 had different substrate specificities. FEMS Microbiol Lett 234:231–237

    Article  PubMed  CAS  Google Scholar 

  • Devereux JP, Haeberli P, Smithies O (1984) A comprehensive set of analysis programs for the VAX. Nucleic Acid Res 12:387–395

    Article  PubMed  CAS  Google Scholar 

  • Doi Y, Kitamura S, Abe H (1995) Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28:4822–4828

    Article  CAS  Google Scholar 

  • Fukui T, Doi Y (1997) Cloning and analysis of the poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) biosynthesis genes of Aeromonas caviae. J Bacteriol 179:4821–4830

    PubMed  CAS  Google Scholar 

  • Gerngross TU, Reilly P, Stubbe J, Sinskey AJ, Peoples OP (1993) Immunocytochemical analysis of poly-β-hydroxybutyrate (PHB) synthase in Alcaligenes eutrophus H16: localization of the synthase enzyme at the surface of PHB granules. J Bacteriol 175:5289–5293

    PubMed  CAS  Google Scholar 

  • Guex N, Peitsch MC (1997) Swiss-model and the swiss-pdbviewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  PubMed  CAS  Google Scholar 

  • Harlow E, Lane D (1988) Antibodies a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 96–104

    Google Scholar 

  • Haywood GW, Anderson AJ, Ewing DF, Dawes EA (1990) Accumulation of a Polyhydroxyalkanoate containing primarily 3-Hydroxydecanoate from Simple Carbohydrate Substrates by Pseudomonas sp. Strain NCIMB 40135. Appl Environ Microbiol 56:3354–3359

    PubMed  CAS  Google Scholar 

  • Hong K, Sun S, Tian W, Chen GQ, Huang W (1999) A rapid method for detecting bacterial polyhydroxyalkanaotes in intact cells by Fourier Transform Infrared Spectroscopy. Appl Microbiol Biotechnol 51:523–526

    Article  CAS  Google Scholar 

  • Huijberts GM, Eggink G, De Waard P, Huisman GW, Witholt B (1992) Pseudomonas putida KT2442 cultivated on glucose accumulates poly(3-Hydroxyalkanotes) consisting of saturated and unsaturated monomers. Appl Environ Microbiol 58:536–544

    PubMed  CAS  Google Scholar 

  • Huisman GW, Wonink E, Meima R, Kazemier B, Terpstra P, Witholt B (1991) Metabolism of poly (3-hydroxyalkanaotes) (PHAs) by Pseudomonas oleovorans. J Biol Chem 266:2191–2198

    PubMed  CAS  Google Scholar 

  • James BW, Mauchline WS, Dennis PJ, Keevil CW, Wait R (1999) Poly-3-hydroxybutyrate in Legionella pneumophila, an energy source for survival in low-nutrient environments. Appl Environ Microbiol 65:822–827

    PubMed  CAS  Google Scholar 

  • Jan S, Courtois J, Courtois B, Goethals G, Nava saucedo JE (1993) Studies of encapsulated Rhizobium meliloti: morphological features, exopolysaccharides and polyhydroxybutyrate productions. In: Colloque Bioencapsulation III. The reality of a new industrial tool, Bruxelles, Institut Meurice, Ceria, pp 116–120

  • Jia Y, Kappock TJ, Frick T, Sinskey AJ, Stubbe J (2000) Lipases provide a new mechanistic model for polyhydroxybutyrate (PHB) synthases: characterization of the functional residues in Chromatium vinosum PHB synthase. Biochemistry 39:3927–3936

    Article  PubMed  CAS  Google Scholar 

  • Johnson C, Bishop AH, Turner CC (1998) Isolation and activity of strains of Bacillus thruingiensis toxic to larvae of the housefly (Diptera: muscidae) and tropical Blackflies. J Invertebr Pathol 71:138–144

    Article  PubMed  Google Scholar 

  • Kelley LA, MacCallum RM, Sternberg MJ (2000) Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol 299:499–520

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis ware. Bioinformatics 17:1244–1245

    Article  PubMed  CAS  Google Scholar 

  • Kyte J, DooLittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  PubMed  CAS  Google Scholar 

  • Labuzek S, Radecka I (2001) Biosynthesis of PHB tercopolymer by Bacillus cereus UW85. J Appl Microbiol 90:353–357

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK, a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  • Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14

    Article  CAS  PubMed  Google Scholar 

  • Liebergesell M, Sonomoto K, Madkour M, Mayer F, Steinbuchel A (1994) Purification and characterization of the poly (hydroxyalkanoic acid) synthase from Chromatium vinosum and localization of the enzyme at the surface of poly (hydroxyalkanoic acid) granules. Eur J Biochem 226:71–80

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Lu XY, Wu Q, Zhang WJ, Zhang G, Chen GQ (2004) Molecular cloning of Polyhydroxyalkanoates synthesis operon from Aeromonas hydrophila and its expression in Escherichia coli. Biotechnol Prog 20:1332–1336

    Article  PubMed  CAS  Google Scholar 

  • Luo R, Chen J, Zhang L, Chen GQ (2006) Polyhydroxyalkanoates co polyesters produced by Ralstonia eutropha PHB4 harboring a low-substrate specificity PHA synthase PhaC2Ps from Pseudomonas stutzeri 1317. Biochem Eng J 32:218–225

    Article  CAS  Google Scholar 

  • Lutke-Eversloh T, Bergander K, Luftmann H, Steinbuchel A (2001) Identification of a new class of biopolymer: bacterial synthesis of a sulfur-containing polymer with thioester linkages. Microbiology 147:11–19

    PubMed  CAS  Google Scholar 

  • Matsusaki H, Manji S, Taguchi K, Kato M, Fukui T, Doi Y (1998) Cloning and molecular analysis of the poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyalkanoate) biosynthesis genes in Pseudomonas sp. strain 61-3. J Bacteriol 180:6459–6467

    PubMed  CAS  Google Scholar 

  • McCool GJ, Cannon MC (1999) Polyhydroxyalkanoate inclusion body-associated proteins and coding region in Bacillus megaterium. J Bacteriol 181:585–592

    PubMed  CAS  Google Scholar 

  • Misra AK, Thakur MS, Srinivas P, Karanth NG (2000) Screening of poly-β-hydroxybutyrate producing microorganisms using Fourier transform infrared spectroscopy. Biotech Lett 22:1217–1219

    Article  CAS  Google Scholar 

  • Niamsiri N, Delamarre SC, Kim YR, Batt CA (2004) Engineering of chimeric class II Polyhydroxyalkanoates synthases. Appl Environ Microbiol 70:6789–6799

    Article  PubMed  CAS  Google Scholar 

  • Noda I, Satkowski MM, Dowrey AE, Marcott C (2004) Polymer alloys of Nodax copolymers and poly (lactic acid). Macromol Biosci 4:269–275

    Article  PubMed  CAS  Google Scholar 

  • Nomura TC, Taguchi K, Gan Z, Kuwabara K, Tanaka T, Takase K, Doi Y (2005) Expression of 3-Ketoacyl-Acyl Carrier Protein Reductase (fabG) genes enhances production of polyhydroxyalkanoate copolymer from glucose in recombinant Escherichia coli JM109. Appl Environ Microbiol 71:4297–4306

    Article  PubMed  CAS  Google Scholar 

  • Nomura TC, Tanaka T, Gan Z, Kuwabara K, Abe H, Takase K, Taguchi K, Doi Y (2004) Effective enhancement of short-chain-length-medium-chain-length polyhydroxyalkanoates copolymer production by co expression of genetically engineered 3-Ketoacyl-Acyl-Carrier-Protein Synthase III (fabH) and polyhydroxyalkanoates synthesis genes. Biomacromolecules 5:1457–1464

    Article  PubMed  CAS  Google Scholar 

  • Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Schrag J, Sussman JL, Verschueren KHG, Goldman A (1992) The α/β hydrolase fold. Protein Eng 5:197–211

    Article  PubMed  CAS  Google Scholar 

  • Ostle AG, Holt JG (1982) Nile blue A as a fluorescent stain for poly-β-hydroxybutyrate. Appl Environ Microbiol 44:238–241

    PubMed  CAS  Google Scholar 

  • Palleroni NJ (1992) Introduction to the family Pseudomonadaceae. In: Balows A, Tru¨per HG, Dworkin M, HarderW, Schleifer KH (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, vol 3. Springer, New York, pp 3071–3085

    Google Scholar 

  • Pazos F, Sternberg MJ (2004) Automated prediction of protein function and detection of functional sites from structure. Proc Natl Acad Sci USA 101:14754–14759

    Article  PubMed  CAS  Google Scholar 

  • Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448

    Article  PubMed  CAS  Google Scholar 

  • Pieper-Furst U, Madkour MH, Mayer F, Steinbuchel A (1994) Purification and characterization of a 14-kilodalton protein that is bound to the surface of polyhydroxyalkanoic acid granules of Rhodococcus rubber. J Bacteriol 176:4328–4337

    PubMed  CAS  Google Scholar 

  • Poirier YC, Nawrath C, Somerville C (1995) Production of Polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. Biol Technol 13:142–150

    CAS  Google Scholar 

  • Potter M, Madkour MH, Mayer F, Steinbuchel A (2002) Regulation of phasing expression and polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha H16. Microbiology 148:2413–2426

    PubMed  CAS  Google Scholar 

  • Qi Q, Steinbuchel A, Rehm BHA (1998) Metabolic routing towards polyhydroxyalkanoic acid synthesis in recombinant Escherichia coli (fadR): inhibition of fatty acid L-oxidation by acrylic acid. FEMS Microbiol Lett 167:89–94

    PubMed  CAS  Google Scholar 

  • Rehm BHA (2003) Polyester) Polyester synthases: natural catalysts for plastics. Biochem J 376:15–33

    Article  PubMed  CAS  Google Scholar 

  • Rehm BHA (2007) Biogenesis of microbial polyhydroxyalkanoates granules: a platform technology for the production of Tailor-made bioparticles. Curr Issues Mol Biol 9:41–62

    PubMed  CAS  Google Scholar 

  • Rehm BHA, Steinbuchel A (1999) Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int J Biol Macromol 25:3–19

    Article  PubMed  CAS  Google Scholar 

  • Rozsa C, Gonzalez M, Galego N, Ortiz P, Martinez J, Martinez R, Gomez MR (1996) Biosynthesis and characterization of Poly (β-hydroxybutyrate) produced by Bacillus circulans. Polym Bull 37:429–435

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Sheu DS, Lee CY (2004) Altering the substrate specificity of Polyhydroxyalkanoates Synthase 1 Derived from Pseudomonas putida GPo1 by Localized Semi random Mutagenesis. J Bacteriol 186:4177–4184

    Article  PubMed  CAS  Google Scholar 

  • Sheu DS, Wang YT, Lee CY (2000) Rapid detection of polyhydroxyalkanoates accumulating bacteria isolated from the environment by colony PCR. Microbiology 146:2019–2025

    PubMed  CAS  Google Scholar 

  • Solaiman DKY (2000) PCR cloning of Pseudomonas resinovorans polyhydroxyalkanoates biosynthesis genes and expression in Escherichia coli. Biotechnol Lett 22:789–794

    Article  CAS  Google Scholar 

  • Solaiman DKY (2002) Polymerase-chain-reaction based detection of individual polyhydroxyalkanaote synthase phaC1 and phaC2 genes. Biotechnol Lett 24:245–250

    Article  CAS  Google Scholar 

  • Solaiman DKY, Ashby RD (2005) Rapid genetic characterization of poly (hydroxyalkanoate) synthase and its applications. Biomacromolecules 6:532–537

    Article  PubMed  CAS  Google Scholar 

  • Solaiman DKY, Ashby RD, Foglia TA (2000) Rapid and specific identification of medium-chain-length polyhydroxyalkanoate synthase gene by polymerase chain reaction. Appl Microbiol Biotechnol 53:690–694

    Article  PubMed  CAS  Google Scholar 

  • Stark A, Russell RB (2003) Annotation in three dimensions. PINTS: patterns in non-homologous tertiary structures. Nucleic Acids Res 31:3341–3344

    Article  PubMed  CAS  Google Scholar 

  • Steinbuchel A (2001) Perspective for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromol Biosci 1:1–24

    Article  CAS  Google Scholar 

  • Steinbuchel A, Schlegel HG (1991) Physiology and molecular genetics of poly (beta-hydroxy-alkanoic acid) synthesis in Alcaligenes eutrophus. Mol Microbiol 5:535–542

    Article  PubMed  CAS  Google Scholar 

  • Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog polym sci 25:1503–1555

    Article  CAS  Google Scholar 

  • Sujatha K, Shenbagarathai R (2006) A study on MCL-polyhydroxyalkanoate accumulation in E. coli harboring phaC1 gene of indigenous Pseudomonas sp. LDC-5. Lett in Appl Microbiology 43:607–614 (On line early)

    CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Tian G, Wu Q, Sun S, Noda I, Chen GQ (2002) Two-dimensional Fourier transform infrared spectroscopy study of biosynthesized poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate). J Polym Sci (Part B: Polym Phys) 40:6893–6899

    Google Scholar 

  • Tian J, Sinskey AJ, Stubbe J (2005) Kinetic studies of polyhydroxybutryate granule formation in Wautersia eutropha H16 by transmission electron microscopy. J Bacteriol 187:3814–3824

    Article  PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  • Vriend G (1990) What if: a molecular modeling and drug design program. J Mol Graph 8:52–56

    Article  PubMed  CAS  Google Scholar 

  • Wahab HA, Khairudin NBA, Samina MR, Najimudin N (2006) Sequence analysis and structure prediction of type II Pseudomonas sp. USM 4-55 PHA synthase and an insight into its catalytic mechanism. BMC Struct Biol 6:23

    Article  PubMed  CAS  Google Scholar 

  • Wieczorek R, Pries A, Steinbuchel A, Mayer F (1995) J Bacteriol 177:2425–2435

    PubMed  CAS  Google Scholar 

  • Willard HH, Merritt LL, Dean JA, Settle FA (1986) Instrumental methods of analysis, 7th edn. CBS Publishers and Distributors, New Delhi

    Google Scholar 

  • Xu J, Guo BH, Yang R, Wu Q, Chen GQ, Zhang ZM (2002) In situ FTIR study on melting and crystallization of Polyhydroxyalkanoates. Polymer 43:6893–6899

    Article  CAS  Google Scholar 

  • Zhang G, Hang X, Green P, K-p HO, Chen GQ (2001) PCR cloning of type II polyhdydroxyalkanoate biosynthesis genes from two Pseudomonas strains. FEMS Microbiol Lett 198:165–170

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Kumar Sudesh (Universiti Sains Malaysia, School of Biological Sciences) for his generous help in Gas Chromatography (GC) analysis. The authors thank Dr. A. H. Bishop, Greenwich University, London for TEM microscopy, Dr. S. Muthusubramaniam and Dr. Sivakolunthu, Madurai Kamaraj University, School of Chemistry, Madurai and Mrs. Geetha sivasubramaniam for their help in spectral studies. The authors express their gratitude to the Department of Science and Technology (DST-WOS-ANo: No.SR/WOS-A/LS-137/2004), New Delhi for its financial support to complete this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajaiah Shenbagarathai.

Additional information

Communicated by Jorge Membrillo-Hernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sujatha, K., Mahalakshmi, A. & Shenbagarathai, R. Molecular characterization of Pseudomonas sp. LDC-5 involved in accumulation of poly 3-hydroxybutyrate and medium-chain-length poly 3-hydroxyalkanoates. Arch Microbiol 188, 451–462 (2007). https://doi.org/10.1007/s00203-007-0265-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-007-0265-2

Keywords

Navigation