Skip to main content
Log in

Regulation of expression of Na+-translocating NADH:quinone oxidoreductase genes in Vibrio harveyi and Klebsiella pneumoniae

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The expression of genes encoding sodium-translocating NADH:quinone oxidoreductase (Na+-NQR) was studied in the marine bacterium Vibrio harveyi and in the enterobacterium Klebsiella pneumoniae. It has been shown that such parameters as NaCl concentration, pH value, and presence of an uncoupler in the growth media do not influence significantly the level of nqr expression. However, nqr expression depends on the growth substrates used by these bacteria. Na+-NQR is highly repressed in V. harveyi during anaerobic growth, and nqr expression is modulated by electron acceptors and values of their redox potentials. The latter effect was shown to be independent of the ArcAB regulatory system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Ap:

Ampicillin

CCCP:

Carbonyl cyanide m-chlorophenylhydrazone

DMSO:

Dimethyl sulfoxide

dNADH:

Reduced nicotinamide hypoxanthine dinucleotide

Km:

Kanamycin

Na+-NQR:

Na+-translocating NADH:quinone oxidoreductase

NDH-1:

H+-translocating NADH:quinone oxidoreductase

NDH-2:

Non-coupled NADH:quinone oxidoreductase

NpGal:

o-nitrophenyl-β-d-galactopyranoside

PCR:

Polymerase chain reaction

SBP:

Sub-bacterial particles

Rf:

Rifampicin

Tc:

Tetracycline

TMAO:

Trimethylamine N-oxide

\(\Delta \mu _{{\text{Na}^{+}}} \) :

Transmembrane difference in electrochemical potentials of sodium ions.

References

  • Alexeyev MF (1999) The pKNOCK series of broad-host-range mobilizable suicide vectors for gene knockout and targeted DNA insertion into the chromosome of gram-negative bacteria. Biotechniques 26:824–828

    PubMed  CAS  Google Scholar 

  • Barquera B, Hellwig P, Zhou W, Morgan JE, Häse CC, Gosink KK, Nilges M, Bruesehoff PJ, Roth A, Lancaster CR, Gennis RB (2002) Purification and characterization of the recombinant Na+-translocating NADH:quinone oxidoreductase from Vibrio cholerae. Biochemistry 41:3781–3789

    Article  PubMed  CAS  Google Scholar 

  • Bertsova YV, Bogachev AV (2002) Operation of the cbb 3-type terminal oxidase in Azotobacter vinelandii. Biochemistry (Moscow) 67:622–626

    Article  CAS  Google Scholar 

  • Bertsova YV, Bogachev AV (2004) The origin of the sodium-dependent NADH oxidation by the respiratory chain of Klebsiella pneumoniae. FEBS Lett 563:207–212

    Article  PubMed  CAS  Google Scholar 

  • Bertsova YV, Bogachev AV, Skulachev VP (1998) Two NADH:ubiquinone oxidoreductases of Azotobacter vinelandii and their role in the respiratory protection. Biochim Biophys Acta 1363:125–133

    Article  PubMed  CAS  Google Scholar 

  • Bogachev AV, Verkhovsky MI (2005) Na+-translocating NADH:quinone oxidoreductase: progress achieved and prospects of investigations. Biochemistry (Moscow) 70:143–149

    Article  CAS  Google Scholar 

  • Bogachev AV, Murtasina RA, Shestopalov AI, Skulachev VP (1995) Induction of the Escherichia coli cytochrome d by low Δμ +H and by sodium ions. Eur J Biochem 232:304–308

    Article  PubMed  CAS  Google Scholar 

  • Bogachev AV, Murtasina RA, Skulachev VP (1996) H+/e stoichiometry for the NADH dehydrogenase I and dimethyl sulfoxide reductase in anaerobically grown Escherichia coli cells. J Bacteriol 178:6233–6237

    PubMed  CAS  Google Scholar 

  • Bogachev AV, Bertsova YV, Barquera B, Verkhovsky MI (2001) Sodium-dependent steps in the redox reactions of the Na+-motive NADH:quinone oxidoreductase from Vibrio harveyi. Biochemistry 40:7318–7323

    Article  PubMed  CAS  Google Scholar 

  • Bogachev AV, Bertsova YV, Ruuge EK, Wikström M, Verkhovsky MI (2002) Kinetics of the spectral changes during reduction of the Na+-motive NADH:quinone oxidoreductase from Vibrio harveyi. Biochim Biophys Acta 1556:113–120

    Article  PubMed  CAS  Google Scholar 

  • Bongaerts J, Zoske S, Weidner U, Unden G (1995) Transcriptional regulation of the proton translocating NADH dehydrogenase genes (nuoA-N) of Escherichia coli by electron acceptors, electron donors and gene regulators. Mol Microbiol 16:521–534

    Article  PubMed  CAS  Google Scholar 

  • Duffy EB, Barquera B (2006) Membrane topology mapping of the Na+-pumping NADH: quinone oxidoreductase from Vibrio cholerae by PhoA-green fluorescent protein fusion analysis. J Bacteriol 188:8343–8351

    Article  PubMed  CAS  Google Scholar 

  • Friedrich T, Scheide D (2000) The respiratory complex I of bacteria, archaea and eukarya and its module common with membrane-bound multisubunit hydrogenases. FEBS Lett 479:1–5

    Article  PubMed  CAS  Google Scholar 

  • Fu HA, Iuchi S, Lin EC (1991) The requirement of ArcA and Fnr for peak expression of the cyd operon in Escherichia coli under microaerobic conditions. Mol Gen Genet 226:209–213

    Article  PubMed  CAS  Google Scholar 

  • Georgellis D, Kwon O, Lin EC, Wong SM, Akerley BJ (2001) Redox signal transduction by the ArcB sensor kinase of Haemophilus influenzae lacking the PAS domain. J Bacteriol 183:7206–7212

    Article  PubMed  CAS  Google Scholar 

  • Häse CC, Mekalanos JJ (1999) Effects of changes in membrane sodium flux on virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci USA 96:3183–3187

    Article  PubMed  Google Scholar 

  • Häse CC, Fedorova ND, Galperin MY, Dibrov PA (2001) Sodium ion cycle in bacterial pathogens: evidence from cross-genome comparisons. Microbiol Mol Biol Rev 65:353–370

    Article  PubMed  Google Scholar 

  • Hayashi M, Hirai K, Unemoto T (1995) Sequencing and the alignment of structural genes in the nqr operon encoding the Na+-translocating NADH-quinone reductase from Vibrio alginolyticus. FEBS Lett 363:75–77

    Article  PubMed  CAS  Google Scholar 

  • Hayashi M, Nakayama Y, Yasui M, Maeda M, Furuishi K, Unemoto T (2001a) FMN is covalently attached to a threonine residue in the NqrB and NqrC subunits of Na+-translocating NADH-quinone reductase from Vibrio alginolyticus. FEBS Lett 488:5–8

    Article  PubMed  CAS  Google Scholar 

  • Hayashi M, Nakayama Y, Unemoto T (2001b) Recent progress in the Na+-translocating NADH-quinone reductase from the marine Vibrio alginolyticus. Biochim Biophys Acta 1505:37–44

    Article  PubMed  CAS  Google Scholar 

  • Hinchliffe P, Sazanov LA (2005) Organization of iron-sulfur clusters in respiratory complex I. Science 309:771–774

    Article  PubMed  CAS  Google Scholar 

  • Malpica R, Sandoval GR, Rodriguez C, Franco B, Georgellis D (2006) Signaling by the arc two-component system provides a link between the redox state of the quinone pool and gene expression. Antioxid Redox Signal 8:781–795

    Article  PubMed  CAS  Google Scholar 

  • Manukhov IV, Bertsova YV, Trofimov DY, Bogachev AV, Skulachev VP (2000) Analysis of HI0220 protein from Haemophilus influenzae, a novel structural and functional analog of ArcB protein from Escherichia coli. Biochemistry (Moscow) 65:1321–1326

    CAS  Google Scholar 

  • Matsushita K, Ohnishi T, Kaback HR (1987) NADH-ubiquinone oxidoreductases of the Escherichia coli aerobic respiratory chain. Biochemistry 26:7732–7737

    Article  PubMed  CAS  Google Scholar 

  • Miller S, Mekalanos J (1988) A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires tox R. J Bacteriol 170:2575–2583

    PubMed  CAS  Google Scholar 

  • Nakayama Y, Hayashi M, Unemoto T (1998) Identification of six subunits constituting Na+-translocating NADH-quinone reductase from the marine Vibrio alginolyticus. FEBS Lett 422:240–242

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi T, Sled VD, Yano T, Yagi T, Burbaev DS, Vinogradov AD (1998) Structure-function studies of iron-sulfur clusters and semiquinones in the NADH-Q oxidoreductase segment of the respiratory chain. Biochim Biophys Acta 1365:301–308

    Article  PubMed  CAS  Google Scholar 

  • Padan E, Venturi M, Gerchman Y, Dover N (2001) Na+/H+ antiporters. Biochim Biophys Acta 1505:144–157

    Article  PubMed  CAS  Google Scholar 

  • Park SJ, Tseng CP, Gunsalus RP (1995) Regulation of succinate dehydrogenase (sdhCDAB) operon expression in Escherichia coli in response to carbon supply and anaerobiosis: role of ArcA and Fnr. Mol Microbiol 15:473–482

    Article  PubMed  CAS  Google Scholar 

  • Pfenninger-Li XD, Dimroth P (1992) NADH formation by Na+-coupled reversed electron transfer in Klebsiella pneumoniae. Mol Microbiol 6:1943–1948

    Article  PubMed  CAS  Google Scholar 

  • Proctor LM, Gunsalus RP (2000) Anaerobic respiratory growth of Vibrio harveyi, Vibrio fischeri and Photobacterium leiognathi with trimethylamine N-oxide, nitrate and fumarate: ecological implications. Environ Microbiol 2:399–406

    Article  PubMed  CAS  Google Scholar 

  • van der Rest ME, Frank C, Molenaar D (2000) Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Escherichia coli. J Bacteriol 182:6892–6899

    Article  PubMed  Google Scholar 

  • Rich PR, Meinier B, Ward B (1995) Predicted structure and possible ion-motive mechanism of the sodium-linked NADH-quinone oxidoreductase of Vibrio alginolyticus. FEBS Lett 375:5–10

    Article  PubMed  CAS  Google Scholar 

  • Schwarz E, Oesterhelt D, Reinke H, Beyreuther K, Dimroth P (1988) The sodium ion translocating oxalacetate decarboxylase of Klebsiella pneumoniae. Sequence of the biotin-containing alpha-subunit and relationship to other biotin-containing enzymes. J Biol Chem 263:9640–9645

    PubMed  CAS  Google Scholar 

  • Skulachev VP (1989) The sodium cycle: a novel type of bacterial energetics. J Bioenerg Biomembr 21:635–647

    Article  PubMed  CAS  Google Scholar 

  • Tokuda H, Unemoto T (1982) Characterisation of the respiration-dependent Na+ pump in the marine bacterium Vibrio alginolyticus. J Biol Chem 257:10007–10014

    PubMed  CAS  Google Scholar 

  • Tokuda H, Unemoto T (1984) Na+ is translocated at NADH:quinone oxidoreductase segment in the respiratory chain of Vibrio alginolyticus. J Biol Chem 259:7785–7790

    PubMed  CAS  Google Scholar 

  • Yagi T (1991) Bacterial NADH-quinone oxidoreductases. J Bioenerg Biomembr 23:211–225

    Article  PubMed  CAS  Google Scholar 

  • Zhou W, Bertsova YV, Feng B, Tsatsos P, Verkhovskaya ML, Gennis RB, Bogachev AV, Barquera B (1999) Sequencing and preliminary characterization of the Na+-translocating NADH:ubiquinone oxidoreductase from Vibrio harveyi. Biochemistry 38:16246–16252

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Russian Foundation for Basic Research (grant 07-04-00619). The authors are grateful to the Genome Sequencing Center at Washington University Medical School for communicating the V. harveyi and K. pneumoniae DNA sequence data prior to publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Bogachev.

Additional information

Communicated by David Kelly.

Accession number: EF394942 (Vibrio harveyi arcB gene, partial cds).

Electronic supplementary material

Below is the link to the electronic supplementary material.

203_2007_254_MOESM1_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fadeeva, M.S., Yakovtseva, E.A., Belevich, G.A. et al. Regulation of expression of Na+-translocating NADH:quinone oxidoreductase genes in Vibrio harveyi and Klebsiella pneumoniae . Arch Microbiol 188, 341–348 (2007). https://doi.org/10.1007/s00203-007-0254-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-007-0254-5

Keywords

Navigation