Skip to main content
Log in

Dual effect of organic acids as a function of external pH in Oenococcus oeni

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In this study we analyzed under various pH conditions including low pH, the effects of l-malic acid and citric acid, combined or not, on the growth, the proton motive force components and the transcription level of selected genes of the heterolactic bacterium Oenococcus oeni. It is shown here that l-malate enhanced the growth yield at pH equal or below 4.5 while the presence of citrate in media led to a complete and unexpected inhibition of the growth at pH 3.2. Nevertheless, whatever the growth conditions, both l-malate and citrate participated in the enhancement of the transmembrane pH gradient, whereas the membrane potential decreased with the pH. These results suggested that it was not citrate that was directly responsible for the inhibition observed in cultures done at low pH, but probably its end products. This was confirmed since, in media containing l-malate, the addition of acetate substantially impaired the growth rate of the bacterium and slightly the membrane potential and pH gradient. Finally, study of the expression of genes involved in the metabolism of organic acids showed that at pH 4.5 and 3.2 the presence of l-malate led to an increased amount of mRNA of mleP encoding a malate transporter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Bandell M, Ansanay V, Rachidi N, Dequin S, Lolkema JS (1997) Membrane potential-generating malate (MleP) and citrate (CitP) transporters of lactic acid bacteria are homologous proteins. Substrate specificity of the 2-hydroxycarboxylate transporter family. J Biol Chem 272:18140–18146

    Article  PubMed  CAS  Google Scholar 

  • Bandell M, Lhotte ME, Marty-Teysset C, Veyrat A, Prevost H, Divies C, Konings WN, Lolkema JS (1998) Mechanism of the citrate transporters in carbohydrate and citrate cometabolism in Lactococcus and Leuconostoc species. Appl Environ Microbiol 64:1594–1600

    PubMed  CAS  Google Scholar 

  • Bennik MH, Verheul A, Abee T, Naaktgeboren-Stoffels G, Gorris LG, Smid EJ (1997) Interactions of nisin and pediocin PA-1 with closely related lactic acid bacteria that manifest over 100-fold differences in bacteriocin sensitivity. Appl Environ Microbiol 63:3628–3636

    PubMed  CAS  Google Scholar 

  • Booth IR (1985) Regulation of cytoplasmic pH in bacteria. Microbiol Rev 49:359–378

    PubMed  CAS  Google Scholar 

  • Breeuwer JA, Abee T (2004) Assessment of the membrane potential, intracellular pH and respiration of bacteria employing fluorescence techniques. In: Molecular microbial ecology manual, 2nd edn, pp 1563–1580

  • Breeuwer P, Drocourt JL, Rombouts FM, Abee T (1996) A novel method for continuous determination of the intracellular pH in bacteria with the internally conjugated fluorescent probe 5 (and 6-)-carboxyfluorescein succinimidyl ester. Appl Environ Microbiol 62:178–183

    PubMed  CAS  Google Scholar 

  • Busch W, Saier MH Jr (2004) The IUBMB-endorsed transporter classification system. Mol Biotechnol 27:253–262

    Article  PubMed  CAS  Google Scholar 

  • Caspritz G, Radler F (1983) Malolactic enzyme of Lactobacillus plantarum. Purification, properties, and distribution among bacteria. J Biol Chem 258:4907–4910

    PubMed  CAS  Google Scholar 

  • Cavin JF, Prevost H, Lin J, Schmitt P, Divies C (1989) Medium for screening Leuconostoc oenos strains defective in malolactic fermentation. Appl Environ Microbiol 55:751–753

    PubMed  CAS  Google Scholar 

  • Cogan TM (1987) Co-metabolism of citrate and glucose by Leuconostoc spp. Effects on growth, substrates and products. J Appl Bacteriol 63:551–558

    CAS  Google Scholar 

  • Desroche N, Beltramo C, Guzzo J (2005) Determination of an internal control to apply reverse transcription quantitative PCR to study stress response in the lactic acid bacterium Oenococcus oeni. J Microbiol Methods 60:325–333

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Quintans N, Magni C, de Mendoza D, Lopez P (1998) The citrate transport system of Lactococcus lactis subsp. lactis biovar diacetylactis is induced by acid stress. Appl Environ Microbiol 64:850–857

    PubMed  CAS  Google Scholar 

  • Henick-Kling T (1986) Growth and metabolism of Leuconostoc oenos and Lactobacillus plantarum in wine. In: PhD thesis, University of Adelaïde, Adelaïde

  • Henick-Kling T (1995) Control of malo-lactic fermentation in wine : energetics, flavour modification and methods of starter culture preparation. J Appl Bacteriol 79:29S-37S

    Google Scholar 

  • Konings WN (2002) The cell membrane and the struggle for life of lactic acid bacteria. Antonie Van Leeuwenhoek 82:3–27

    Article  PubMed  CAS  Google Scholar 

  • Kunkee RE (1991) Some roles of malic acid in the malolactic fermentation in wine making. FEMS Microbiol Lett 88:55–71

    CAS  Google Scholar 

  • Labarre C, Divies C, Guzzo J (1996a) Genetic organization of the mle locus and identification of a mleR-like gene from Leuconostoc oenos. Appl Environ Microbiol 62:4493–4498

    CAS  Google Scholar 

  • Labarre C, Guzzo J, Cavin JF, Divies C (1996b) Cloning and characterization of the genes encoding the malolactic enzyme and the malate permease of Leuconostoc oenos. Appl Environ Microbiol 62:1274–1282

    CAS  Google Scholar 

  • Liu SQ (2002) A review: malolactic fermentation in wine—beyond deacidification. J Appl Microbiol 92:589–601

    Article  PubMed  CAS  Google Scholar 

  • Lolkema JS, Poolman B, Konings WN (1995) Role of scalar protons in metabolic energy generation in lactic acid bacteria. J Bioenerg Biomembr 27:467–473

    Article  PubMed  CAS  Google Scholar 

  • Lonvaud-Funel A (1986) Recherches sur les bactéries lactiques du vin. Fonctions métaboliques, croissance, génétique plasmidique. In: PhD Thesis, Université Bordeaux II, Institut d’Oenologie, Bordeaux, France

  • Lonvaud-Funel A (1999) Lactic acid bacteria in the quality improvement and depreciation of wine. Antonie Van Leeuwenhoek 76:317–331

    Article  PubMed  CAS  Google Scholar 

  • Magni C, de Mendoza D, Konings WN, Lolkema JS (1999) Mechanism of citrate metabolism in Lactococcus lactis: resistance against lactate toxicity at low pH. J Bacteriol 181:1451–1457

    PubMed  CAS  Google Scholar 

  • Martin M, Magni C, Lopez P, de Mendoza D (2000) Transcriptional control of the citrate-inducible citMCDEFGRP operon, encoding genes involved in citrate fermentation in Leuconostoc paramesenteroides. J Bacteriol 182:3904–3912

    Article  PubMed  CAS  Google Scholar 

  • Martin MG, Sender PD, Peiru S, de Mendoza D, Magni C (2004) Acid-inducible transcription of the operon encoding the citrate lyase complex of Lactococcus lactis biovar diacetylactis CRL264. J Bacteriol 186:5649–5660

    Article  PubMed  CAS  Google Scholar 

  • Marty-Teysset C, Lolkema JS, Schmitt P, Divies C, Konings WN (1995) Membrane potential-generating transport of citrate and malate catalyzed by CitP of Leuconostoc mesenteroides. J Biol Chem 270:25370–25376

    Article  PubMed  CAS  Google Scholar 

  • Marty-Teysset C, Lolkema JS, Schmitt P, Divies C, Konings WN (1996a) The citrate metabolic pathway in Leuconostoc mesenteroides: expression, amino acid synthesis, and alpha-ketocarboxylate transport. J Bacteriol 178:6209–6215

    CAS  Google Scholar 

  • Marty-Teysset C, Posthuma C, Lolkema JS, Schmitt P, Divies C, Konings WN (1996b) Proton motive force generation by citrolactic fermentation in Leuconostoc mesenteroides. J Bacteriol 178:2178–2185

    CAS  Google Scholar 

  • Miller JH (1959) Use of dinitrosalycilic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Mills DA, Rawsthorne H, Parker C, Tamir D, Makarova K (2005) Genomic analysis of Oenococcus oeni PSU-1 and its relevance to winemaking. FEMS Microbiol Rev 29:465–475

    Article  PubMed  CAS  Google Scholar 

  • Miranda M, Ramos A, Veiga-da-Cunha M, Loureiro-Dias MC, Santos H (1997) Biochemical basis for glucose-induced inhibition of malolactic fermentation in Leuconostoc oenos. J Bacteriol 179:5347–5354

    PubMed  CAS  Google Scholar 

  • Ramos A, Santos H (1996) Citrate and sugar co-fermentation in Leuconosctoc oenos, a 13C nuclear magnetic resonance study. Appl Environ Microbiol 62:2577–2585

    PubMed  CAS  Google Scholar 

  • Ramos A, Poolman B, Santos H, Lolkema JS, Konings WN (1994) Uniport of anionic citrate and proton consumption in citrate metabolism generates a proton motive force in Leuconostoc oenos. J Bacteriol 176:4899–4905

    PubMed  CAS  Google Scholar 

  • Ramos A, Lolkema JS, Konings WN, Santos H (1995) Enzyme basis for pH regulation of citrate and pyruvate metabolism by Leuconostoc oenos. Appl Environ Microbiol 61:1303–1310

    PubMed  CAS  Google Scholar 

  • Richter H, Hamann I, Unden G (2003) Use of the mannitol pathway in fructose fermentation of Oenococcus oeni due to limiting redox regeneration capacity of the ethanol pathway. Arch Microbiol 179:227–233

    PubMed  CAS  Google Scholar 

  • Saguir FM, Manca de Nadra MC (1996) Organic acid metabolism under different glucose concentrations of Leuconostoc oenos from wine. J Appl Bacteriol 81:393–397

    CAS  Google Scholar 

  • Saguir FM, Manca de Nadra MC (2002) Effect of L-malic and citric acids metabolism on the essential amino acid requirements for Oenococcus oeni growth. J Appl Microbiol 93:295–301

    Article  PubMed  CAS  Google Scholar 

  • Saier MH Jr (2000) A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev 64:354–411

    Article  PubMed  CAS  Google Scholar 

  • Salema M, Poolman B, Lolkema JS, Dias MC, Konings WN (1994) Uniport of monoanionic L-malate in membrane vesicles from Leuconostoc oenos. Eur J Biochem 225:289–295

    Article  PubMed  CAS  Google Scholar 

  • Salema M, Capucho I, Poolman B, San Romao MV, Dias MC (1996a) In vitro reassembly of the malolactic fermentation pathway of Leuconostoc oenos (Oenococcus oeni). J Bacteriol 178:5537–5539

    CAS  Google Scholar 

  • Salema M, Lolkema JS, San Romao MV, Lourero Dias MC (1996b) The proton motive force generated in Leuconostoc oenos by L-malate fermentation. J Bacteriol 178:3127–3132

    CAS  Google Scholar 

  • Salou P, Loubiere P, Pareilleux A (1994) Growth and energetics of Leuconostoc oenos during cometabolism of glucose with citrate or fructose. Appl Environ Microbiol 60:1459–1466

    PubMed  CAS  Google Scholar 

  • Schmitt P, Divies C, Merlot C (1990) Utilization of citrate by Leuconostoc mesenteroides subsp. cremoris in continuous culture. Biotechnol Lett 12:127–130

    Article  CAS  Google Scholar 

  • Sobczak I, Lolkema JS (2005) The 2-hydroxycarboxylate transporter family: physiology, structure, and mechanism. Microbiol Mol Biol Rev 69:665–695

    Article  PubMed  CAS  Google Scholar 

  • Starrenburg MJ, Hugenholtz J (1991) Citrate Fermentation by Lactococcus and Leuconostoc spp. Appl Environ Microbiol 57:3535–3540

    PubMed  CAS  Google Scholar 

  • Versari A, Parpinello GP, Cattaneo M (1999) Leuconostoc oenos and malolactic fermentation in wine: a review. J Ind Microbiol Biotechnol 23:447–455

    Article  CAS  Google Scholar 

  • Zaunmuller T, Eichert M, Richter H, Unden G (2006) Variations in the energy metabolism of biotechnologically relevant heterofermentative lactic acid bacteria during growth on sugars and organic acids. Appl Microbiol Biotechnol 72:421–429

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Julian and Tina Coles for their reading of the English manuscript. We also thank Nicolas Desroche and Charlotte Beltramo for helpful discussion on Real-Time PCR experiments. This work was supported by the European Commission, contract number QLKI-CT-2002-02388. Daniel M. Linares was the recipient of a fellowship from the Spanish Ministry of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphaëlle Tourdot-Maréchal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

203_2007_230_MOESM1_ESM.doc

203_2007_230_MOESM2_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Augagneur, Y., Ritt, JF., Linares, D.M. et al. Dual effect of organic acids as a function of external pH in Oenococcus oeni . Arch Microbiol 188, 147–157 (2007). https://doi.org/10.1007/s00203-007-0230-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-007-0230-0

Keywords

Navigation