Skip to main content
Log in

Analysis of diurnal and vertical microbial diversity of a hypersaline microbial mat

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Microbial mats are prokaryotic communities that provide model systems to analyze microbial diversity and ecophysiological interactions. Community diversity of microbial mat samples was assessed at 8:00 a.m. and 3:00 p.m. in a combined analysis consisting of 16S rRNA-denaturing gradient gel electrophoresis (DGGE) and phospholipid fatty acid (PLFA) profiles. The divergence index determined from PLFA and DGGE data showed that depth-related differences have a greater influence on diversity than temporal variations. Shannon and Simpson indices yielded similar values in all samples, which suggested the stable maintenance of a structurally diverse microbial community. The increased diversity observed at 3:00 p.m. between 2.5 and 4 mm can be explained mainly by diversification of anaerobic microorganisms, especially sulfate-reducing bacteria. In the afternoon sampling, the diversity index reflected a higher diversity between 4 and 5.5 mm depth, which suggested an increase in the diversity of strict anaerobes and fermenters. The results are consistent with the conclusion that hypersaline microbial mats are characterized by high degree of diversity that shifts in response to the photobiological adaptations and metabolic status of the microbial community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allwood AC, Walter MR, Kamber BS, Marshall CP, Burch IW (2006) Stromatolite reef from the Early Archaean era of Australia. Nature 441:714–718

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Begon M, Harper JL, Towsend CR (1990) Ecology–individuals, populations, communities. Blackwell scientific publications, Oxford, UK

    Google Scholar 

  • Benthien M, Wieland A, García de Oteyza T, Grimalt JO, Kühl M (2004) Oil-contamination effects on a hypersaline microbial mat community (Camargue, France) as studied with microsensors and geochemical analysis. Ophelia 58:135–150

    Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    PubMed  CAS  Google Scholar 

  • Brosius J, Dull TL, Sleeter DD, Noller HF (1981) Gene organisation and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 148:107–127

    Article  PubMed  CAS  Google Scholar 

  • Casamayor EO, Pedrós-Alió C, Muyzer G, Amann R (2002) Microheterogeneity in 16S ribosomal DNA-defined bacterial populations from stratified planktonic environment is related to temporal changes and to ecological adaptations. Appl Environ Microbiol 68:1706–1714

    Article  PubMed  CAS  Google Scholar 

  • Caumette P, Matheron R, Raymond N, Relexans JC (1994) Microbial mats in the hypersaline ponds of Mediterranean salterns (Salins-de-Giraud, France). FEMS Microbiol Ecol 13:273–286

    Article  CAS  Google Scholar 

  • Chang YJ, Stephen JR, Richter AP, Venosa AD, Bruggemann J, Macnaughton SJ, Kowalchuk GA, Haines JR, Kline E, White DC (1999) Phylogenetic analysis of aerobic freshwater and marine enrichment cultures efficient in hydrocarbon degradation: effect of profiling method. J Microbiol Methods 40:19–31

    Article  Google Scholar 

  • Des Marais DJ (1990) Microbial mats and the early evolution of life. Trends Ecol Evol 5:140–144

    Article  PubMed  CAS  Google Scholar 

  • Dunbar J, Takala S, Barns SM, Davis JA, Kuske CR (1999) Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl Environ Microbiol 65:1662–1669

    PubMed  CAS  Google Scholar 

  • Eichner CA, Erb RW, Timmis KH, Wagner-Dögler I (1999) Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shocks in the activated sludge microbial community. Appl Environ Microbiol 65:102–109

    PubMed  CAS  Google Scholar 

  • Fourçans A, García de Oteyza T, Wieland A, Solé A, Diestra E, van Bleijswijk J, Grimalt JO, Kühl M, Esteve I, Muyzer G, Caumette P, Duran R (2004) Characterization of functional bacterial groups in a hypersaline microbial mat community (Salins-de-Giraud, Camargue, France). FEMS Microbiol Ecol 51:55–70

    Article  PubMed  CAS  Google Scholar 

  • Fourçans A, Sole A, Diestra E, Ranchou-Peyruse A, Esteve I, Caumette P, Duran R (2006) Vertical migration of phototrophic bacterial populations in a hypersaline microbial mat from Salins-de-Giraud (Camargue, France). FEMS Microbiol Ecol 57:367–377

    Article  PubMed  CAS  Google Scholar 

  • Fromin N, Hamelin J, Tarnawski S, Roesti D, Jourdain-Miserez K, Forestier N, Teyssier-Cuvelle S, Gillet F, Aragno M, Rossi P (2002) Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns. Environ Microbiol 4:634–643

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Pichel F, Mechling M, Castenholz RW (1994) Diel migrations of microorganisms within a benthic, hypersaline mat community. Appl Environ Microbiol 60:1500–1511

    PubMed  Google Scholar 

  • Guckert JB, Antworth CP, Nichols PD, White DC (1985) Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiol Ecol 31:147–158

    CAS  Google Scholar 

  • Guerrero R, Piqueras M, Berlanga M (2002) Microbial mats and the search for minimal ecosystems. Int Microbiol 5:177–188

    Article  PubMed  CAS  Google Scholar 

  • Hedrick DB, Peacock A, Stephen JR, Macnaughton SJ, Brüggeman J, White DC (2000) Measuring soil microbial community diversity using polar lipid fatty acid and denaturing gradient gel electrophoresis data. J Microbiol Methods 41:235–248

    Article  PubMed  CAS  Google Scholar 

  • Hiraishi A (1999) Isoprenoid quinones as biomarkers of microbial populations in the environment. J Biosci Bioeng 88:449–460

    Article  PubMed  CAS  Google Scholar 

  • Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJM (2001) Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol 67:4399–4406

    Article  PubMed  CAS  Google Scholar 

  • Ibekwe AM, Papiernik SK, Gan J, Yates SR, Yang CH, Crowley DE (2001) Impact of fumigants on soil microbial communities. Appl Environ Microbiol 67:3245–3257

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki M, Hiraishi A (1998) A new approach to numerical analyses of microbial quinone profiles in the environment. Microbes Environ 13:67–76

    Google Scholar 

  • Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomis JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58:169–188

    Article  PubMed  CAS  Google Scholar 

  • Krebs CJ (1985) Species diversity. In: Krebs CJ (ed) Ecology: the experimental analysis of distribution and abundance. Harper and Row, New York, pp 507–534

    Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Ley RE, Harris JK, Wilcox J, Spear JR, Miller SR, Bebout BM, Maresca JA, Bryant DA, Sogin ML, Pace NR (2006) Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl Environ Microbiol 72:3685–3695

    Article  PubMed  CAS  Google Scholar 

  • Ludwig JA, Reynolds JF (1988) Statistical ecology: I. Primer on methods and computing. Wiley-Interscience, New York, p 96

    Google Scholar 

  • Macnaughton SJ, Stephen JR, Venosa AD, Davis GA, Chan YJ, White DC (1999) Microbial population changes during bioremediation of an experimental oil spill. Appl Environ Microbiol 65:3566–3574

    PubMed  CAS  Google Scholar 

  • Margalef R (1958) Information theory in ecology. Gen Syst 3:36–71

    Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  • Navarrete A, Peacock A, Macnaughton SJ, Urmeneta J, Mas-Castellà J, White DC, Guerrero R (2000) Physiological status and community composition of microbial mats of the Ebro delta, Spain, by Signature Lipid Biomarkers. Microb Ecol 39:92–99

    Article  PubMed  CAS  Google Scholar 

  • Navarrete A, Urmeneta J, Cantu JM, Vegas E, White DC, Guerrero R (2004) Signature lipid biomarkers of microbial mats of the Ebro delta (Spain), Camargue and Étang de Berre (France): an assessment of biomass and activity. Ophelia 58:175–188

    Google Scholar 

  • Nübel U, Garcia-Pichel F, Kühl M, Muyzer G (1999) Quantifying microbial diversity: morphotypes, 16S rRNA genes, and carotenoids of oxygenic phototrophs in microbial mats. Appl Environ Microbiol 65:422–430

    PubMed  Google Scholar 

  • Ollivier B, Caumette P, García JL, Mah RA (1994) Anaerobic bacteria from hypersaline environments. Microbiol Rev 58:27–38

    PubMed  CAS  Google Scholar 

  • Paerl HW, Pinckney JL, Steppe TF (2000) Cyanobacterial–bacterial mat consortia: examining the functional unit of microbial survival and growth in extreme environments. Environ Microbiol 2:11–26

    Article  PubMed  CAS  Google Scholar 

  • Ringelberg DB, Davis JD, Smith GA, Pfiffner SM, Nichols PD, Nickels JS, Henson JM, Wilson JT, Yates M, Kampbell DH, Reed HW, Stocksdale TT, White DC (1988) Validation of signature phospholipids fatty acid biomarkers for alkaline-utilizing bacteria in soils and subsurface aquifer materials. FEMS Microbiol Ecol 62:39–50

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sekiguchi H, Watanabe M, Nakahara T, Xu B, Uchiyama H (2002) Succession of bacterial community structure along the Changjiang River determined by denaturing gradient gel electrophoresis and clone library analysis. Appl Environ Microbiol 68:5142–5150

    Article  PubMed  CAS  Google Scholar 

  • Shannon CE, Weaver W (1963) The mathematical theory of communications. University of Illinois Press, Urbana

    Google Scholar 

  • Simpson EH (1949) Measurement of diversity. Nature 163:688

    Google Scholar 

  • Sørensen KB, Canfield DE, Teske AP, Oren A (2005) Community composition of a hypersaline endoevaporitic microbial mat. Appl Environ Microbiol 71:7352–7365

    Article  PubMed  CAS  Google Scholar 

  • Stephen JR, Chang YJ, Gan YD, Peacock A, Pfiffner SM, Barcelona MJ, White DC, Macnaughton SJ (1999) Microbial characterization of a JP-4 fuel-contaminated site using a combined lipid biomarker/polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE)-based approach. Environ Microbiol 1:231–241

    Article  PubMed  CAS  Google Scholar 

  • Tankéré SPC, Bourne DG, Muller FLL, Torsvik V (2002) Microenvironments and microbial community structure in sediments. Environ Microbiol 4:97–105

    Article  PubMed  Google Scholar 

  • Torsvik V, Øverås L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245

    Article  PubMed  CAS  Google Scholar 

  • Torsvik V, Øverås L, Thingstad TF (2002) Prokaryotic diversity–magnitude, dynamics and controlling factors. Science 269:1064–1066

    Article  Google Scholar 

  • Villanueva L, Navarrete A, Urmeneta J, White DC, Guerrero R (2004) Combined phospholipid biomarker-16S rRNA gene denaturing gradient gel electrophoresis analysis of bacterial diversity and physiological status in an intertidal microbial mat. Appl Environ Microbiol 70:6920–6926

    Article  PubMed  CAS  Google Scholar 

  • White DC, Bobbie RJ, Heron JS, King JD, Morrison SJ (1979) Biochemical measurements of microbial mass and activity from environmental samples. In: Costerton JW, Colwell RR (eds) Native aquatic bacteria: enumeration, activity and ecology, ASTM STP 695. American Society for Testing and Materials, Philadelphia, pp 69–81

    Google Scholar 

  • White DC, Findlay RH (1988) Biochemical markers for measurements of predation effects on the biomass, community structure, nutritional status, and metabolic activity of microbial biofilms. Hydrobiologia 159:119–132

    Google Scholar 

  • White DC, Ringelberg DB (1997) Utility of the signature lipid biomarker analysis in determining in situ microbial biomass, community structure and nutritional/physiological status of deep subsurface microbiota. In: Amy PS, Haldeman DL (eds) The microbiology of the terrestrial subsurface. CRC, Boca Raton, pp 117–134

    Google Scholar 

  • Wieland A, Kühl M (2000) Irradiance and temperature regulation of oxygenic photosynthesis and O2 consumption in a hypersaline cyanobacterial mat (Solar Lake, Egypt). Mar Bio 137:71–85

    Article  CAS  Google Scholar 

  • Wieland A, Zopfi J, Benthien M, Kühl M (2005) Biogeochemistry of an iron-rich hypersaline microbial mat (Camargue, France). Microb Ecol 49:34–49

    Article  PubMed  CAS  Google Scholar 

  • Wintzingerode FV, Göbel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229

    Article  Google Scholar 

Download references

Acknowledgments

This paper is dedicated to the memory of David C. White: “Thank you for being a friend and mentor, we will always remember the wonderful times we spent together”. We thank Mercè Piqueras and Wendy Ran for useful suggestions. We are grateful to the Center for Biomarker Analysis (TN, USA) staff for advice and technical assistance. This research was supported by Spanish MCyT grant BOS2002-02944 and MEC CGL2005-04990, and by grant DE-FC02-96ER62278, from the Office of Biological and Environmental Research and the Natural and Accelerated Bioremediation Research Program. LV was recipient of a scholarship from the Spanish MECD (AP2001-0953).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Villanueva.

Additional information

Dedicated to the memory of David C. White.

Electronic supplementary material

Below is the link to the electronic supplementary material.

203_2007_229_MOESM1_ESM.ppt

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villanueva, L., Navarrete, A., Urmeneta, J. et al. Analysis of diurnal and vertical microbial diversity of a hypersaline microbial mat. Arch Microbiol 188, 137–146 (2007). https://doi.org/10.1007/s00203-007-0229-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-007-0229-6

Keywords

Navigation