Skip to main content
Log in

Growth-phase dependent differential gene expression in Synechocystis sp. strain PCC 6803 and regulation by a group 2 sigma factor

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Cyanobacteria must continually alter their physiological growth state in response to changes in light intensity and their nutritional and physical environment. Under typical laboratory batch growth conditions, cyanobacteria grow exponentially, then transition to a light-limited stage of linear growth before finally reaching a non-growth stationary phase. In this study, we utilized DNA microarrays to profile the expression of genes in the cyanobacterium Synechocystis sp. PCC 6803 to compare exponential and linear growth. We also studied the importance of SigB, a group 2 sigma factor in this cyanobacterium, during the different growth phases. The transcription of approximately 10% of the genes in the wild type were different in the linear, compared to the exponential phase, and our results showed that: (1) many photosynthesis and regulatory genes had lowered transcript levels; (2) individual genes, such as sigH, phrA, and isiA, which encode a group 4 sigma factor, a DNA photolyase, and a Chl-binding protein, respectively, were strongly induced; and, (3) the loss of SigB significantly impacted the differential expression of genes and modulated the changes seen in the wild type in regard to photosynthesis, regulatory and the unknown genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aoki S, Kondo T, Ishiura M (2002) A promoter-trap vector for clock-controlled genes in the cyanobacterium Synechocystis sp. PCC 6803. J Microbiol Methods 49:265–274

    Article  PubMed  CAS  Google Scholar 

  • Aoki S, Kondo T, Wada H, Ishiura M (1997) Circadian rhythm of the cyanobacterium Synechocystis sp. strain PCC 6803 in the dark. J Bacteriol 179:5751–5755

    PubMed  CAS  Google Scholar 

  • Asayama M, Imamura S, Yoshihara S, Miyazaki A, Yoshida N, Sazuka T, Kaneko T, Ohara O, Tabata S, Osanai T, Tanaka K, Takahashi H, Shirai M (2004) SigC, the group 2 sigma factor of RNA polymerase, contributes to the late-stage gene expression and nitrogen promoter recognition in the cyanobacterium Synechocystis sp. strain PCC 6803. Biosci Biotechnol Biochem 68:477–487

    Article  PubMed  CAS  Google Scholar 

  • Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL, Zoran MJ (2005) Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet 6:544–556

    Article  PubMed  CAS  Google Scholar 

  • Bibby TS, Nield J, Barber J (2001) Three-dimensional model and characterization of the iron stress-induced CP43’-photosystem I supercomplex isolated from the cyanobacterium Synechocystis PCC 6803. J Biol Chem 276:43246–43252

    Article  PubMed  CAS  Google Scholar 

  • Boylan SA, Redfield AR, Price CW (1993) Transcription factor sigma B of Bacillus subtilis controls a large stationary-phase regulon. J Bacteriol 175:3957–3963

    PubMed  CAS  Google Scholar 

  • Britton RA, Eichenberger P, Gonzalez-Pastor JE, Fawcett P, Monson R, Losick R, Grossman AD (2002) Genome-wide analysis of the stationary-phase sigma factor (sigma-H) regulon of Bacillus subtilis. J Bacteriol 184:4881–4890

    Article  PubMed  CAS  Google Scholar 

  • Brudler R, Hitomi K, Daiyasu H, Toh H, Kucho K, Ishiura M, Kanehisa M, Roberts VA, Todo T, Tainer JA, Getzoff ED (2003) Identification of a new cryptochrome class. Structure, function, and evolution. Mol Cell 11:59–67

    Article  PubMed  CAS  Google Scholar 

  • Caslake LF, Gruber TM, Bryant DA (1997) Expression of two alternative sigma factors of Synechococcus sp. strain PCC 7002 is modulated by carbon and nitrogen stress. Microbiology 143(Pt 12):3807–3818

    Article  PubMed  CAS  Google Scholar 

  • Chan PF, Foster SJ, Ingham E, Clements MO (1998) The Staphylococcus aureus alternative sigma factor σB controls the environmental stress response but not starvation survival or pathogenicity in a mouse abscess model. J Bacteriol 180:6082–6089

    PubMed  CAS  Google Scholar 

  • Ditty JL, Williams SB, Golden SS (2003) A cyanobacterial circadian timing mechanism. Annu Rev Genet 37:513–543

    Article  PubMed  CAS  Google Scholar 

  • Fang FC (2005) Sigma cascades in prokaryotic regulatory networks. Proc Natl Acad Sci USA 102:4933–4934

    Article  PubMed  CAS  Google Scholar 

  • Gerhardt P, Drew SW (1994) Liquid culture. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. 2 nd edn. American Society for Microbiology, Washington, DC, pp 224–247

    Google Scholar 

  • Golden SS (2003) Timekeeping in bacteria: the cyanobacterial circadian clock. Curr Opin Microbiol 6:535–540

    Article  PubMed  CAS  Google Scholar 

  • Golden SS (2004) Meshing the gears of the cyanobacterial circadian clock. Proc Natl Acad Sci USA 101:13697–13698

    Article  PubMed  CAS  Google Scholar 

  • Golden SS, Canales SR (2003) Cyanobacterial circadian clocks–timing is everything. Nat Rev Microbiol 1:191–199

    Article  PubMed  CAS  Google Scholar 

  • Gruber TM, Bryant DA (1998) Characterization of the alternative σ-factors SigD and SigE in Synechococcus sp. strain PCC 7002. SigE is implicated in transcription of post-exponential-phase-specific genes. Arch Microbiol 169:211–219

    Article  PubMed  CAS  Google Scholar 

  • Gruber TM, Gross CA (2003) Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol 57:441–466

    Article  PubMed  CAS  Google Scholar 

  • Havaux M, Guedeney G, Hagemann M, Yeremenko N, Matthijs HC, Jeanjean R (2005) The chlorophyll-binding protein IsiA is inducible by high light and protects the cyanobacterium Synechocystis PCC6803 from photooxidative stress. FEBS Lett 579:2289–2293

    Article  PubMed  CAS  Google Scholar 

  • Hoper D, Volker U, Hecker M (2005) Comprehensive characterization of the contribution of individual SigB-dependent general stress genes to stress resistance of Bacillus subtilis. J Bacteriol 187:2810–2826

    Article  PubMed  CAS  Google Scholar 

  • Huisman GW, Siegele DA, Zambrano MA, Kolter R (1996) Morphological and physioloical changes during stationary phase. In: Neidhardt FC et al. (eds) Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington, DC, pp 1672–1682

    Google Scholar 

  • Imamura S, Asayama M, Takahashi H, Tanaka K, Shirai M (2003a) Antagonistic dark/light-induced SigB/SigD, group 2 sigma factors, expression through redox potential and their roles in cyanobacteria. FEBS Lett 554:357–362

    Article  CAS  Google Scholar 

  • Imamura S, Tanaka K, Shirai M, Asayama M (2006) Growth phase-dependent activation of nitrogen-related genes by a control network of group 1 and group 2σ factors in a cyanobacterium. J Biol Chem 281:2668–2675

    Article  PubMed  CAS  Google Scholar 

  • Imamura S, Yoshihara S, Nakano S, Shiozaki N, Yamada A, Tanaka K, Takahashi H, Asayama M, Shirai M (2003b) Purification, characterization, and gene expression of all sigma factors of RNA polymerase in a cyanobacterium. J Mol Biol 325:857–872

    Article  CAS  Google Scholar 

  • Iwasaki H, Williams SB, Kitayama Y, Ishiura M, Golden SS, Kondo T (2000) A kaiC-interacting sensory histidine kinase, SasA, necessary to sustain robust circadian oscillation in cyanobacteria. Cell 101:223–233

    Article  PubMed  CAS  Google Scholar 

  • Koburger T, Weibezahn J, Bernhardt J, Homuth G, Hecker M (2005) Genome-wide mRNA profiling in glucose starved Bacillus subtilis cells. Mol Genet Genomics 274:1–12

    Article  PubMed  CAS  Google Scholar 

  • Kucho K, Okamoto K, Tsuchiya Y, Nomura S, Nango M, Kanehisa M, Ishiura M (2005) Global analysis of circadian expression in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 187:2190–2199

    Article  PubMed  CAS  Google Scholar 

  • Lemeille S, Geiselmann J, Latifi A (2005) Crosstalk regulation among group 2-sigma factors in Synechocystis PCC6803. BMC Microbiol 5:18

    Article  PubMed  CAS  Google Scholar 

  • Lepp PW, Schmidt TM (1998) Nucleic acid content of Synechococcus spp. during growth in continuous light and light/dark cycles. Arch Microbiol 170:201–207

    Article  PubMed  CAS  Google Scholar 

  • Li H, Singh AK, McIntyre LM, Sherman LA (2004) Differential gene expression in response to hydrogen peroxide and the putative PerR regulon of Synechocystis sp. strain PCC 6803. J Bacteriol 186:3331–3345

    Article  PubMed  CAS  Google Scholar 

  • Lin JF, Wu SH (2004) Molecular events in senescing Arabidopsis leaves. Plant J 39:612–628

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Tsinoremas NF, Johnson CH, Lebedeva NV, Golden SS, Ishiura M, Kondo T (1995) Circadian orchestration of gene expression in cyanobacteria. Genes Dev 9:1469–1478

    PubMed  CAS  Google Scholar 

  • Makinoshima H, Aizawa S, Hayashi H, Miki T, Nishimura A, Ishihama A (2003) Growth phase-coupled alterations in cell structure and function of Escherichia coli. J Bacteriol 185:1338–1345

    Article  PubMed  CAS  Google Scholar 

  • Makinoshima H, Nishimura A, Ishihama A (2002) Fractionation of Escherichia coli cell populations at different stages during growth transition to stationary phase. Mol Microbiol 43:269–279

    Article  PubMed  CAS  Google Scholar 

  • Mandelstam J (1960) The intracellular turnover of protein and nucleic acids and its role in biochemical differentiation. Bacteriol Rev 24:289–308

    PubMed  CAS  Google Scholar 

  • Manganelli R, Voskuil MI, Schoolnik GK, Dubnau E, Gomez M, Smith I (2002) Role of the extracytoplasmic-function σ factor σH in Mycobacterium tuberculosis global gene expression. Mol Microbiol 45:365–374

    Article  PubMed  CAS  Google Scholar 

  • Missiakas D, Raina S (1998) The extracytoplasmic function sigma factors: role and regulation. Mol Microbiol 28:1059–1066

    Article  PubMed  CAS  Google Scholar 

  • Mostertz J, Hecker M (2003) Patterns of protein carbonylation following oxidative stress in wild-type and sigB Bacillus subtilis cells. Mol Genet Genomics 269:640–648

    Article  PubMed  CAS  Google Scholar 

  • Murakami KS, Darst SA (2003) Bacterial RNA polymerases: the wholo story. Curr Opin Struct Biol 13:31–39

    Article  PubMed  CAS  Google Scholar 

  • Ng WO, Pakrasi HB (2001) DNA photolyase homologs are the major UV resistance factors in the cyanobacterium Synechocystis sp. PCC 6803. Mol Gen Genet 264:924–930

    Article  PubMed  CAS  Google Scholar 

  • Ng WO, Zentella R, Wang Y, Taylor JS, Pakrasi HB (2000) PhrA, the major photoreactivating factor in the cyanobacterium Synechocystis sp. strain PCC 6803 codes for a cyclobutane-pyrimidine-dimer-specific DNA photolyase. Arch Microbiol 173:412–417

    Article  PubMed  CAS  Google Scholar 

  • Nishiwaki T, Satomi Y, Nakajima M, Lee C, Kiyohara R, Kageyama H, Kitayama Y, Temamoto M, Yamaguchi A, Hijikata A, Go M, Iwasaki H, Takao T, Kondo T (2004) Role of KaiC phosphorylation in the circadian clock system of Synechococcus elongatus PCC 7942. Proc Natl Acad Sci USA 101:13927–13932

    Article  PubMed  CAS  Google Scholar 

  • Nystrom T (2004) Stationary-phase physiology. Annu Rev Microbiol 58:161–181

    Article  PubMed  CAS  Google Scholar 

  • Nystrom T, Kjelleberg S (1989) Role of protein synthesis in the cell division and starvation induced resistance to autolysis of a marine Vibrio during the initial phases of starvation. J Gen Mincrobiol 135:1599–1606

    Google Scholar 

  • Paget MS, Helmann JD (2003) The σ 70 family of sigma factors. Genome Biol 4:203

    Article  PubMed  Google Scholar 

  • Park YI, Sandstrom S, Gustafsson P, Oquist G (1999) Expression of the isiA gene is essential for the survival of the cyanobacterium Synechococcus sp. PCC 7942 by protecting photosystem II from excess light under iron limitation. Mol Microbiol 32:123–129

    Article  PubMed  CAS  Google Scholar 

  • Postier BL, Wang HL, Singh A, Impson L, Andrews HL, Klahn J, Li H, Risinger G, Pesta D, Deyholos M, Galbraith DW, Sherman LA, Burnap RL (2003) The construction and use of bacterial DNA microarrays based on an optimized two-stage PCR strategy. BMC Genomics 4:23

    Article  PubMed  Google Scholar 

  • Potrykus J, Wegrzyn G (2004) The ypdI gene codes for a putative lipoprotein involved in the synthesis of colanic acid in Escherichia coli. FEMS Microbiol Lett 235:265–271

    Article  PubMed  CAS  Google Scholar 

  • Potts M (1999) Mechanisms of desiccation tolerance in cyanobacteria. Eur J Phycol 34:319–328

    Article  Google Scholar 

  • Rick PD, Silver RP (1996) Enterobacterial common antigen and capsular polysaccharides. In: Neidhardt FC et al. (eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology. 2 nd edn. ASM Publications, Washington, DC, pp 104–122

    Google Scholar 

  • Rippka R, Waterbury JB, Stanier RY (1981) Isolation and purification of cyanobacteria some general principles. In: Starr MP, Stolp H, Truper HG, Balows A, Schlegel HG (eds) The Prokaryotes,vol 1. Springer, Berlin Heidelberg New York, pp 212–220

  • Ruiz N, Silhavy TJ (2005) Sensing external stress: watchdogs of the Escherichia coli cell envelope. Curr Opin Microbiol 8:122–126

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Bryant DA (1998) Growth at low temperature causes nitrogen limitation in the cyanobacterium Synechococcus sp. PCC 7002. Arch Microbiol 169:10–19

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sandstrom S, Park YI, Oquist G, Gustafsson P (2001) CP43′, the isiA gene product, functions as an excitation energy dissipator in the cyanobacterium Synechococcus sp. PCC 7942. Photochem Photobiol 74:431–437

    Article  PubMed  CAS  Google Scholar 

  • Sen A, Dwivedi K, Rice KA, Bullerjahn GS (2000) Growth phase and metal-dependent regulation of the dpsA gene in Synechococcus sp. strain PCC 7942, USA. Arch Microbiol 173:352–357

    Article  PubMed  CAS  Google Scholar 

  • Siegele DA, Kolter R (1992) Life after log. J Bacteriol 174:345–348

    PubMed  CAS  Google Scholar 

  • Singh AK, McIntyre LM, Sherman LA (2003) Microarray analysis of the genome-wide response to iron deficiency and iron reconstitution in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 132:1825–1839

    Article  PubMed  CAS  Google Scholar 

  • Singh AK, Sherman LA (2000) Identification of iron-responsive, differential gene expression in the cyanobacterium Synechocystis sp. strain PCC 6803 with a customized amplification library. J Bacteriol 182:3536–3543

    Article  PubMed  CAS  Google Scholar 

  • Singh AK, Sherman LA (2005) Pleiotropic effect of a histidine kinase on carbohydrate metabolism in Synechocystis sp. strain PCC 6803 and its requirement for heterotrophic growth. J Bacteriol 187:2368–2376

    Google Scholar 

  • Singh AK, Sherman LA (2006) Iron-independent dynamics of IsiA production during the transition to stationary phase in the cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol Lett 256:159–164

    Article  PubMed  CAS  Google Scholar 

  • Singh AK, Summerfield TC, Li H, Sherman LA (2006) The heat shock response in the cyanobacterium Synechocystis sp. Strain PCC 6803 and regulation of gene expression by HrcA and SigB. Arch Microbiol 186:273–286

    Article  PubMed  CAS  Google Scholar 

  • Sinha RP, Hader DP (2002) Life under solar UV radiation in aquatic organisms. Adv Space Res 30:1547–1556

    Article  PubMed  CAS  Google Scholar 

  • Tandeau de Marsac N, Houmard J (1993) Adaptation of cyanobacteria to environmental stimuli: new steps towards molecular mechanisms. FEMS Microbiol Rev 104:119–190

    Article  Google Scholar 

  • Tani TH, Khodursky A, Blumenthal RM, Brown PO, Matthews RG (2002) Adaptation to famine: a family of stationary-phase genes revealed by microarray analysis. Proc Natl Acad Sci USA 99:13471–13476

    Article  PubMed  CAS  Google Scholar 

  • Taton A, Grubisic S, Brambilla E, De Wit R, Wilmotte A (2003) Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl Environ Microbiol 69:5157–5169

    Article  PubMed  CAS  Google Scholar 

  • Temperton VM, Grayston SJ, Jackson G, Barton CV, Millard P, Jarvis PG (2003) Effects of elevated carbon dioxide concentration on growth and nitrogen fixation in Alnus glutinosa in a long-term field experiment. Tree Physiol 23:1051–1059

    PubMed  CAS  Google Scholar 

  • Tonk L, Visser PM, Christiansen G, Dittmann E, Snelder EO, Wiedner C, Mur LR, Huisman J (2005) The microcystin composition of the cyanobacterium Planktothrix agardhii changes toward a more toxic variant with increasing light intensity. Appl Environ Microbiol 71:5177–5181

    Article  PubMed  CAS  Google Scholar 

  • Ulrich LE, Koonin EV, Zhulin IB (2005) One-component systems dominate signal transduction in prokaryotes. Trends Microbiol 13:52–56

    Article  PubMed  CAS  Google Scholar 

  • Vinnemeier J, Hagemann M (1999) Identification of salt-regulated genes in the genome of the cyanobacterium Synechocystis sp. strain PCC 6803 by subtractive RNA hybridization. Arch Microbiol 172:377–386

    Article  PubMed  CAS  Google Scholar 

  • Vinnemeier J, Kunert A, Hagemann M (1998) Transcriptional analysis of the isiAB operon in salt-stressed cells of the cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol Lett 169:323–330

    Article  PubMed  CAS  Google Scholar 

  • Whitfield C, Roberts IS (1999) Structure, assembly and regulation of expression of capsules in Escherichia coli. Mol Microbiol 31:1307–1319

    Article  PubMed  CAS  Google Scholar 

  • Wu P, Ma L, Hou X, Wang M, Wu Y, Liu F, Deng XW (2003) Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol 132:1260–1271

    Article  PubMed  CAS  Google Scholar 

  • Wyman M, Fay P (1987) Acclimation to the natural light climate. In: Fay P, Van Baalen C (eds) The cyanobacteria. Elsevier, Amsterdam, pp 347–376

    Google Scholar 

  • Yeremenko N, Kouril R, Ihalainen JA, D’Haene S, van Oosterwijk N, Andrizhiyevskaya EG, Keegstra W, Dekker HL, Hagemann M, Boekema EJ, Matthijs HC, Dekker JP (2004) Supramolecular organization and dual function of the IsiA chlorophyll-binding protein in cyanobacteria. Biochemistry 43:10308–10313

    Article  PubMed  CAS  Google Scholar 

  • Yousef N, Pistorius EK, Michel KP (2003) Comparative analysis of idiA and isiA transcription under iron starvation and oxidative stress in Synechococcus elongatus PCC 7942 wild-type and selected mutants. Arch Microbiol 180:471–483

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Lauren McIntyre, Department of Agronomy, Purdue University, for developing the ANOVA model for analysis of the microarray data and Lisa Bono for training us in its use. We also wish to thank Dr. Hong Li for her significant efforts during the initial stages of this project. This research was supported by grant DE FG02-99ER20342 from the Department of Energy. J.S.F. was supported, in part, by a National Research Service Award 5F32AI056967-02 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis A. Sherman.

Electronic supplementary material

Below are the electronic supplementary materials.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foster, J.S., Singh, A.K., Rothschild, L.J. et al. Growth-phase dependent differential gene expression in Synechocystis sp. strain PCC 6803 and regulation by a group 2 sigma factor. Arch Microbiol 187, 265–279 (2007). https://doi.org/10.1007/s00203-006-0193-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-006-0193-6

Keywords

Navigation