Skip to main content

Advertisement

Log in

Preliminary characterization of a thermostable DNA polymerase I from a mesophilic Bacillus sphaericus strain C3-41

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A thermostable DNA polymerase I from a mesophilic Bacillus sphaericus strain C3-41 was characterized in this study. The polI was cloned, sequenced and over-expressed in Escherichia coli. The expressed 110 kDa fusion protein of PolI was stable at 70°C for 1 h. Compared with DNA polymerase I of E. coli (TaKaRa), the relative polymerase activity of this PolI was 3.33 ± 0.1 RFU μl−1 at 37°C using fluorescent quantitative analysis. It showed higher polymerase activity than E. coli PolI at higher temperature, with a relative activity of 3.75 ± 0.1 RFU μl−1 at 70°C. The polI sequence analysis and the protein structure prediction indicated that this protein had a high similarly to other PolI from thermophilic micro-organisms. This information is of importance for future study for evolution of the house-keeping gene polI in entomopathogenic bacterium B. sphaericus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aliotta JM, Pelletier JJ, Ware JL, Moran LS, Benner JS, Kong HM (1996) Thermostable Bst DNA polymerase I lakes a 3′→5′ proofreading exonuclease activity. Genet Anal 12:185–195

    PubMed  CAS  Google Scholar 

  • Bao K, Cohen SN (2004) Reverse transcriptase activity innate to DNA polymerase I and DNA topoisomerase I proteins of streptomyces telomere complex. Proc Natl Acad Sci 101:14361–14366

    Article  PubMed  CAS  Google Scholar 

  • Bourgouin C, Delecluse A, Torre F, Szulmajster J (1990) Transfer of the toxin protein genes of Bacillus sphaericus into Bacillus thuringiensis subsp. israelensis and their expression. Appl Environ Microbiol 56:340–344

    PubMed  CAS  Google Scholar 

  • Bruck I, Yuzhakov A, Yurieva O, Jeruzalmi D, Skangalis M, Kuriyan J, O’Donnell M (2002) Analysis of a multicomponent thermostable DNA polymerase III replicase from an extreme thermophile. J Biol Chem 19:17334–17348

    Article  CAS  Google Scholar 

  • Cano RJ, Monica K, Borucki (1995) Revival and identification of bacterial spores in 20-to 40-million-year-old Dominican amber. Science 268:1060–1064

    Article  PubMed  CAS  Google Scholar 

  • Chatelier EL, Bécherel OJ, Alencon E, Canceill D, Ehrlich SD, Fuchs RP, Janniére L (2004) Involvement of DnaE, the second replicative DNA polymerase from Bacillus subtilis, in DNA mutagenesis. J Biol Chem 16:1757–1767

    Google Scholar 

  • Chien A, Edgar DB, Trela JM (1976) Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol 127:1550–1557

    PubMed  CAS  Google Scholar 

  • Deckert G, Warren PV, Gaasterland T, Young WG, Lenox AL,Graham DE, Overbeek R, Snead MA, Keller M, Aujay M, Huber R, Feldman RA, Short JM, Olsen GJ, Swanson RV (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392:353–358

    Article  PubMed  CAS  Google Scholar 

  • Harini S, Griffiths K, Flynn EK, Astatke M, Shih PJ, Lee JE, Gerard GF, Gibbs MD, Bergquist PL (2004) Thermophilic bacterial DNA polymerases with reverse-transcriptase activity. Extremophiles 8:243–251

    Article  CAS  Google Scholar 

  • Joyce CM, Steitz TA (1994) Function and structure relationships in DNA polymerases. Annu Rev Biochem 63:777–822

    Article  PubMed  CAS  Google Scholar 

  • Kong HM, Pelletier JJ, Aliotta JM (1998) Over-expression and purification of truncated thermostable DNA polymerase by protein fusion. US Patent 5814506

  • Krell T, Greco1 F, Engel1 O, Dubayle J, Dubayle J, Kennel A, Charloteaux B, Brasseur R, Chevalier M, Sodoyer R, Habit RE (2004) HIV-1 gp41 and gp160 are hyperthermostable proteins in a mesophilic environment characterization of gp41 mutants. Eur J Biochem 271:1566–1579

    Article  PubMed  CAS  Google Scholar 

  • Nakamura LK (2000) Phylogeny of Bacillus sphaericus-like organisms. Int J Syst Evol Microbiol 50:1715–1722

    PubMed  CAS  Google Scholar 

  • Pavlov AR, Pavlova N, Kozyavkin SA, Slesarev AI (2004) Recent developments in the optimization of thermostable DNA polymerases for efficient applications. Trends Biotechnol 22:253–260

    Article  PubMed  CAS  Google Scholar 

  • Perler F, Kumar S, Kong H (1996) Thermostable DNA polymerase. Adv Protein Chem 48:377–435

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell J (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Sellmann E, Schroder KL, Knoblich IM, Westermann P (1992) Purification and characterization of DNA polymerases from Bacillus species. J Bacteriol 174:4350–4355

    PubMed  CAS  Google Scholar 

  • Tsujimoto Y, Watanabe A, Nakano K, Watanabe K, Matsui H, Tsuji K, Tsukihara T, Suzuki Y (2003) Gene cloning, expression, and crystallization of a thermostable exo-inulinase from Geobacillus stearothermophilus KP1289. Appl Microbiol Biotechnol 62:180–185

    Article  PubMed  CAS  Google Scholar 

  • Vellore J, Moretz SE, Lampson BC (2004) A group II intron-type open reading frame from the thermophile Bacillus (Geobacillus) stearothermophilus encodes a heat-stable reverse transcriptase. Appl Environ Microbiol 70:7140–7147

    Article  PubMed  CAS  Google Scholar 

  • Villbrandt B, Sobek H, Frey B, Schomburg D (2000) Domain exchange: chimerase of Thermus aquaticus DNA polymerase, Escherichia coli DNA polymerase I and Thermotoga neapolitana DNA polymerase. Protein Eng 13:645–654

    Article  PubMed  CAS  Google Scholar 

  • Vogt G, Woell S, Argos P (1997) Protein thermal stability, hydrogen bonds, and ion pairs. J Mol Biol 269:631–643

    Article  PubMed  CAS  Google Scholar 

  • Wingren C, Edmundson AB, Borrebaeck CAK (2003) Designing proteins to crystallize through-strand pairing. Protein Eng 16:255–264

    Article  PubMed  CAS  Google Scholar 

  • Xu D, Cote JC (2003) Phylogenetic relationships between Bacillus species and related genera inferred from comparison of 39 end 16S rDNA and 59 end 16S–23S ITS nucleotide sequences. Int J Syst Evol Microbiol 53:695–704

    Article  PubMed  CAS  Google Scholar 

  • Yoon JH, Lee KC, Weiss N, Kho YH, Kang KH, Park YH (2001) Sporosarcina aquimarina sp. nov., a bacterium isolated from seawater in Korea, and transferof Bacillus globisporus (Larkin and Stokes 1967), Bacillus psychrophilus (Nakamura 1984) and Bacillus pasteurii (Chester 1898) to the genus Sporosarcina as Sporosarcina globispora comb. nov., Sporosarcina psychrophila comb. nov. and Sporosarcina pasteurii comb. nov., and emended description of the genus Sporosarcina. Int J Syst Evol Microbiol 51:1079–1086

    PubMed  CAS  Google Scholar 

  • Yuan ZM, Neilsen-LeRoux C, Pasteur N, Delecluse A, Charles JF, Frutos R (1999) Cloning and expression of the bin genes of Bacillus sphaericus C3-41 in a crystal minus B. thuringiensis subsp. Israelensis. Wei Sheng Wu Xue Bao 39:29–35

    PubMed  CAS  Google Scholar 

  • Yuan ZM, Rang C, Maroun RC, Victor JP, Frutos R, Pasteur N, Vendrely C, Jean-Francois C, Nielsen-LeRoux C (2001) Identification and molecular structural prediction analysis of a toxicity determinant in the Bacillus sphaericus crystal larvicidal toxin. Eur J Biochem 268:2751–2760

    Article  PubMed  CAS  Google Scholar 

  • Zhang YM, Liu EY, Cai QX, Chen ZS (1987) Isolation of two high toxin bacillus sphaericus strains. Inseticidal Microorg 1:98–99

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Simon Rayner for useful suggestion and critical reading of the manuscript, and Mr. Cai Quanxin for his technical assistance. The project was supported by grants (KSCX2-SW-301-10, KSCX2-SW-315) from the Chinese Academy of Sciences, a 973 project (2003CB114201) and a grant (30470037) from NFSC, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Zhiming.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bei, H., Haizhou, L., Xiaomin, H. et al. Preliminary characterization of a thermostable DNA polymerase I from a mesophilic Bacillus sphaericus strain C3-41. Arch Microbiol 186, 203–209 (2006). https://doi.org/10.1007/s00203-006-0135-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-006-0135-3

Keywords

Navigation